Excitation of the Delta (1232) resonance in proton - nucleus collisions

Trzaska, M. ; Pelte, D. ; Lemaire, M. -C. ; et al.
Z.Phys.A 340 (1991) 325-331, 1991.
Inspire Record 314551 DOI 10.17182/hepdata.15689

The excitation of theΔ resonance is observed in proton collisions on C, Nb and Pb targets at 0.8 and 1.6 GeV incident energies. The mass E0 and widthΓ of the resonance are determined from the invariant mass spectra of correlated (p, π±)-pairs in the final state of the collision: The mass E0 is smaller than that of the free resonance, however by comparing to intra-nuclear cascade calculations, this reduction is traced back to the effects of Fermi motion, NN scattering and pion reabsorption in nuclear matter.

0 data tables match query

Comparison of p + A and Si + Au collisions at 14.6-GeV/c

The E802 collaboration Abbott, T. ; Akiba, Y. ; Beavis, D. ; et al.
Phys.Rev.Lett. 66 (1991) 1567-1570, 1991.
Inspire Record 331219 DOI 10.17182/hepdata.19913

The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.

0 data tables match query

Composite particle production in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Saito, N. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 49 (1994) 3211-3218, 1994.
Inspire Record 383739 DOI 10.17182/hepdata.25998

Recently, highly relativistic Au beams have become available at the Brookhaven National Laboratory, Alternating Gradient Synchrotron. Inclusive production cross sections for composite particles, d, t, He3, and He4, in 11.5A GeV/c Au+Pt collisions have been measured using a beam line spectrometer. For comparison, composite particle production was also measured in Si+Pt and p+Pt collisions at similar beam momenta per nucleon (14.6A GeV/c and 12.9 GeV/c, respectively). The projectile dependence of the production cross section for each composite particle has been fitted to Aprojα. The parameter α can be described by a single function of the mass number and the momentum per nucleon of the produced particle. Additionally, the data are well described by momentum-space coalescence. Comparisons with similar analysis of Bevalac A+A data are made. The coalescence radii extracted from momentum-space coalescence fits are used to determine reaction volumes (‘‘source size’’) within the context of the Sato-Yazaki model.

0 data tables match query


Safronov, G.A. ; Baranov, M.V. ; Voronin, S.V. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 966-969, 1988.
Inspire Record 272212 DOI 10.17182/hepdata.17350
0 data tables match query


Bozhko, N.I. ; Borisov, A.A. ; Vovenko, A.S. ; et al.
Yad.Fiz. 31 (1980) 1494-1500, 1980.
Inspire Record 142571 DOI 10.17182/hepdata.11063
0 data tables match query

Production of Pions and Light Fragments at Large Angles in High-Energy Nuclear Collisions

Nagamiya, S. ; Lemaire, M.C. ; Moller, E. ; et al.
Phys.Rev.C 24 (1981) 971-1009, 1981.
Inspire Record 169971 DOI 10.17182/hepdata.26341

Inclusive cross sections for production of π+, π−, p, d, H3, He3, and He4 have been measured at laboratory angles from 10° to 145° in nuclear collisions of Ne + Naf, Ne + Cu, and Ne + Pb at 400 MeV/nucleon, C + C, C + Pb, Ne + NaF, Ne + Cu, Ne + Pb, Ar + KCl, and Ar + Pb at 800 MeV/nucleon, and Ne + NaF and Ne + Pb at 2.1 GeV/nucleon. The production of light fragments in proton induced collisions at beam energies of 800 MeV and 2.1 GeV has also been measured in order to allow us to compare these processes. For equal-mass nuclear collisions the total integrated yields of nuclear charges are well explained by a simple participant-spectator model. For 800 MeV/nucleon beams the energy spectra of protons at c.m. 90° are characterized by a "shoulder-arm" type of spectrum shape with an exponential falloff at high energies, whereas those of pions are of a simple exponential type. The inverse of the exponential slope, E0, for protons is systematically larger than that for pions. This value of E0 is larger for heavier-mass projectiles and targets. It also increases monotonically with the beam energy. The angular anisotropy of protons is larger than that of pions. The yield ratio of π− to total nuclear charge goes up with the beam energy, whereas the yields of composite fragments decrease. The ratio of low-energy π− to π+, as well as that of H3 to He3, is larger than the neutron to proton ratio of the system. The spectrum shape of the composite fragments with mass number A is explained very well by the Ath power of the observed proton spectra. The sizes of the interaction region are evaluated from the observed coalescence coefficients. The radius obtained is typically 3-4 fm. The yield ratio of composite fragments to protons strongly depends on the projectile and target masses and the beam energy, but not on the emission angle of the fragments. These results are compared with currently available theoretical models. NUCLEAR REACTIONS Ne + NaF, Ne + Cu, Ne + Pb, EA=400 MeV/nucleon; C + C, C + Pb, Ne + NaF, Ne + Cu, Ne + Pb, Ar + KCl, Ar + Pb, EA=800 MeV/nucleon; Ne + NaF, Ne + Pb, EA=2100 MeV/nucleon; p + C, p+ NaF, p + KCl, p + Cu, p + Pb, E=800 MeV; p + C, p + NaF, p + KCl, p + Cu, p + Pb, E=2100 MeV; measured σ(p,θ) for π+, π−, p, d, H3, He3, and He4.

0 data tables match query


Barkov, L.M. ; Datsko, V.S. ; Ivanov, Yu.M. ; et al.
Sov.J.Nucl.Phys. 35 (1982) 694, 1982.
Inspire Record 168436 DOI 10.17182/hepdata.41359
0 data tables match query

Angular and Momentum Dependence of Polarization of Protons Emitted in the $p c$ Collisions at 640-{MeV}

Zulkarneev, R.Ya. ; Kutuev, R.Kh. ; Murtazaev, Kh. ;
Yad.Fiz. 32 (1980) 889-892, 1980.
Inspire Record 153351 DOI 10.17182/hepdata.39226
0 data tables match query

A Search for weakly interacting neutral particles in missing energy events in 450-GeV/c p N collisions

The HELIOS collaboration Åkesson, T. ; Almehed, S. ; Angelis, A.L. S. ; et al.
Z.Phys.C 52 (1991) 219-226, 1991.
Inspire Record 302922 DOI 10.17182/hepdata.15014

We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order

0 data tables match query

Production of pi+-, K+-, p, and anti-p in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Diebold, G.E. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 48 (1993) 2984-2994, 1993.
Inspire Record 364483 DOI 10.17182/hepdata.26015

During the recent commissioning of Au beams at the Brookhaven Alternating Gradient Synchrotron facility, experiment 886 measured production cross sections for π±, K±, p, and p¯ in minimum bias Au+Pt collisions at 11.5A GeV/c. Invariant differential cross sections, Ed3σ/dp3, were measured at several rigidities (p/Z≤1.8 GeV/c) using a 5.7° (fixed-angle) focusing spectrometer. For comparison, particle production was measured in minimum bias Si+Pt collisions at 14.6A GeV/c using the same apparatus and in p+Pt collisions at 12.9 GeV/c using a similar spectrometer at KEK. When normalized to projectile mass, Aproj, the measured π± and K± cross sections are nearly equal for the p+Pt and Si+Pt reactions. In contrast to this behavior, the π− cross section measured in Au+Pt shows a significant excess beyond Aproj scaling of the p+Pt measurement. This enhancement suggests collective phenomena contribute significantly to π− production in the larger Au+Pt colliding system. For the Au+Pt reaction, the π+ and K+ yields also exceed Aproj scaling of p+Pt collisions. However, little significance can be attributed to these excesses due to larger experimental uncertainties for the positive rigidity Au beam measurements. For antiprotons, the Si+Pt and Au+Pt cross sections fall well below Aproj scaling of the p+Pt yields indicating a substantial fraction of the nuclear projectile is ineffective for p¯ production. Comparing with p+Pt multiplicities, the Si+Pt and Au+Pt antiproton yields agree with that expected solely from ‘‘first’’ nucleon-nucleon collisions (i.e., collisions between previously unstruck nucleons). In light of expected p¯ annihilation in the colliding system, such projectile independence is unexpected without additional (projectile dependent) sources of p¯ production. In this case, the data indicate an approximate balance exists between absorption and additional sources of antiprotons. This balance is remarkable given the wide range of projectile mass spanned by these measurements.

0 data tables match query