Energy dependence of kaon-to-proton ratio fluctuations in central Pb+Pb collisions from $\sqrt{s_{NN}}$ = 6.3 to 17.3 GeV

The NA49 collaboration Anticic, T. ; Baatar, B. ; Barna, D. ; et al.
Phys.Rev.C 83 (2011) 061902, 2011.
Inspire Record 884686 DOI 10.17182/hepdata.58492

Kaons and protons carry large parts of two conserved quantities, strangeness and baryon number. It is argued that their correlation and thus also fluctuations are sensitive to conditions prevailing at the anticipated parton-hadron phase boundary. Fluctuations of the $(\mathrm{K}^+ + \mathrm{K}^-)/(\mathrm{p}+\bar{\mathrm{p}})$ and $\mathrm{K}^+/\mathrm{p}$ ratios have been measured for the first time by NA49 in central Pb+Pb collisions at 5 SPS energies between $\sqrt{s_{NN}}$= 6.3 GeV and 17.3 GeV. Both ratios exhibit a change of sign in $\sigma_{\mathrm{dyn}}$, a measure of non-statistical fluctuations, around $\sqrt{s_{NN}}$ = 8 GeV. Below this energy, $\sigma_{\mathrm{dyn}}$ is positive, indicating higher fluctuation compared to a mixed event background sample, while for higher energies, $\sigma_{\mathrm{dyn}}$ is negative, indicating correlated emission of kaons and protons. The results are compared to UrQMD calculations which which give a good description at the higher SPS energies, but fail to reproduce the transition to positive values.

0 data tables match query

Production of deuterium, tritium, and $^3$He in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS

The NA49 collaboration Anticic, T. ; Baatar, B. ; Bartke, J. ; et al.
Phys.Rev.C 94 (2016) 044906, 2016.
Inspire Record 1469272 DOI 10.17182/hepdata.88359

Production of $d$, $t$, and $^3$He nuclei in central Pb+Pb interactions was studied at five collision energies ($\sqrt{s_{NN}}=$ 6.3, 7.6, 8.8, 12.3, and 17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra, rapidity distributions, and particle ratios were measured. Yields are compared to predictions of statistical models. Phase-space distributions of light nuclei are discussed and compared to those of protons in the context of a coalescence approach. The coalescence parameters $B_2$ and $B_3$, as well as coalescence radii for $d$ and $^3$He were determined as a function of transverse mass at all energies.

0 data tables match query