Measurement of exclusive $\gamma\gamma\rightarrow W^+W^-$ production and search for exclusive Higgs boson production in $pp$ collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 94 (2016) 032011, 2016.
Inspire Record 1475477 DOI 10.17182/hepdata.79951

Searches for exclusively produced $W$ boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$ and exclusively produced Higgs boson in the process $pp(gg) \rightarrow pHp$ have been performed using $e^{\pm}\mu^{\mp}$ final states. These measurements use 20.2 fb$^{-1}$ of $pp$ collisions collected by the ATLAS experiment at a center-of-mass energy $\sqrt{s}=8$ TeV at the LHC. Exclusive production of $W^+W^-$ consistent with the Standard Model prediction is found with 3.0$\sigma$ significance. The exclusive $W^+W^-$ production cross-section is determined to be $\sigma (\gamma\gamma\rightarrow W^{+}W^{-}\rightarrow e^{\pm}\mu^{\mp} X) = 6.9 \pm 2.2 (\mathrm{stat.}) \pm 1.4 (\mathrm{sys.})$ fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95\% confidence-level as $-1.7 \times 10^{-6} < a_0^W/\Lambda^2 < 1.7 \times 10^{-6}$ GeV$^{-2}$and $-6.4 \times 10^{-6} < a_C^W/\Lambda^2 < 6.3 \times 10^{-6}$ GeV$^{-2}$. A 95\% confidence-level upper limit on the total production cross-section for exclusive Higgs boson is set to 1.2 pb.

0 data tables match query

Measurement of total and differential $W^+W^-$ production cross sections in proton-proton collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2016) 029, 2016.
Inspire Record 1426515 DOI 10.17182/hepdata.76808

The production of $W$ boson pairs in proton-proton collisions at $\sqrt{s}=$ 8 TeV is studied using data corresponding to 20.3 fb$^{-1}$ of integrated luminosity collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The $W$ bosons are reconstructed using their leptonic decays into electrons or muons and neutrinos. Events with reconstructed jets are not included in the candidate event sample. A total of 6636 $WW$ candidate events are observed. Measurements are performed in fiducial regions closely approximating the detector acceptance. The integrated measurement is corrected for all acceptance effects and for the $W$ branching fractions to leptons in order to obtain the total $WW$ production cross section, which is found to be 71.1$\pm1.1$(stat)$^{+5.7}_{-5.0}$(syst)$\pm1.4$ pb. This agrees with the next-to-next-to-leading-order Standard Model prediction of 63.2$^{+1.6}_{-1.4}$(scale)$\pm1.2$(PDF) pb. Fiducial differential cross sections are measured as a function of each of six kinematic variables. The distribution of the transverse momentum of the leading lepton is used to set limits on anomalous triple-gauge-boson couplings.

0 data tables match query

Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 76 (2016) 683, 2016.
Inspire Record 1477209 DOI 10.17182/hepdata.75330

A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale ($\Lambda$) values below 92 TeV are excluded at the 95% confidence level, corresponding to gluino masses below 2000 GeV. For large values of $\tan\beta$, values of $\Lambda$ up to 107 TeV and gluino masses up to 2300 GeV are excluded. In the simplified model, gluino masses are excluded up to 1570 GeV for neutralino masses around 100 GeV. Neutralino masses up to 700 GeV are excluded for all gluino masses between 800 GeV and 1500 GeV, while the strongest exclusion of 750 GeV is achieved for gluino masses around 1400 GeV.

0 data tables match query

Measurements of $W^\pm Z$ production cross sections in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 092004, 2016.
Inspire Record 1426523 DOI 10.17182/hepdata.75197

This paper presents measurements of $W^\pm Z$ production in $pp$ collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu\ \ell \ell} = 35.1 \pm$ 0.9 (stat.) $\pm 0.8$ (sys.) $\pm 0.8$ (lumi.) fb, for one leptonic decay channel. In comparison, the next-to-leading-order Standard Model expectation is 30.0 $\pm$ 2.1 fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^\pm Z$ system. From the analysis of events with a $W$ and a $Z$ boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^\pm Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted.

0 data tables match query

Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Rev.D 84 (2011) 112004, 2011.
Inspire Record 884741 DOI 10.17182/hepdata.74220

We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.

0 data tables match query

Search for metastable heavy charged particles with large ionization energy loss in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 93 (2016) 112015, 2016.
Inspire Record 1448101 DOI 10.17182/hepdata.73584

This paper presents a search for massive charged long-lived particles produced in pp collisions at $\sqrt{s}=$ 13 TeV at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as $R$-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\sqrt{s}=$ 8 TeV dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and masses are set. Gluino $R$-hadrons with lifetimes above 0.4 ns and decaying to $q\bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 GeV and 1590 GeV. In the case of stable $R$-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.

0 data tables match query

Measurement of the charged-particle multiplicity inside jets from $\sqrt{s}=8$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 322, 2016.
Inspire Record 1419070 DOI 10.17182/hepdata.72257

The number of charged particles inside jets is a widely used discriminant for identifying the quark or gluon nature of the initiating parton and is sensitive to both the perturbative and non-perturbative components of fragmentation. This paper presents a measurement of the average number of charged particles with $p_\text{T}>500$ MeV inside high-momentum jets in dijet events using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector in $pp$ collisions at $\sqrt{s}=8$ TeV collisions at the LHC. The jets considered have transverse momenta from 50 GeV up to and beyond 1.5 TeV. The reconstructed charged-particle track multiplicity distribution is unfolded to remove distortions from detector effects and the resulting charged-particle multiplicity is compared to several models. Furthermore, quark and gluon jet fractions are used to extract the average charged-particle multiplicity for quark and gluon jets separately.

0 data tables match query

Measurement of jet charge in dijet events from sqrt(s)=8 TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 052003, 2016.
Inspire Record 1393758 DOI 10.17182/hepdata.70788

The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb$^{-1}$ of data recorded with the ATLAS detector at $\sqrt{s}=8$ TeV in $pp$ collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The $p_T$-dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several LO and NLO parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a $p_{T}$-dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases.

0 data tables match query

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

0 data tables match query

Search for dark matter in events with heavy quarks and missing transverse momentum in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 92, 2015.
Inspire Record 1322381 DOI 10.17182/hepdata.69927

This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb$^{-1}$ of $pp$ collisions collected at $\sqrt{s} = 8$ TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing $b$-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter--nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.

0 data tables match query