First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 776 (2018) 249-264, 2018.
Inspire Record 1512107 DOI 10.17182/hepdata.80519

This letter presents the first measurement of jet mass in Pb-Pb and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV and 5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm and resolution parameter $R = 0.4$. The jets are measured in the pseudorapidity range $|\eta_{\rm{jet}}|<0.5$ and in three intervals of transverse momentum between 60 GeV/$c$ and 120 GeV/$c$. The measurement of the jet mass in central Pb-Pb collisions is compared to the jet mass as measured in p-Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb-Pb collisions is consistent within uncertainties with p-Pb reference measurements. Furthermore, the measured jet mass in Pb-Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties.

0 data tables match query

Anisotropic flow of identified particles in Pb-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}=5.02$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 09 (2018) 006, 2018.
Inspire Record 1672822 DOI 10.17182/hepdata.84717

The elliptic ($v_2$), triangular ($v_3$), and quadrangular ($v_4$) flow coefficients of $\pi^{\pm}$, ${\rm K}^{\pm}$, ${\rm p+\overline{p}}$, ${\Lambda+\overline{\Lambda}}$, ${\rm K}^{\rm 0}_{\rm S}$, and the $\phi$-meson are measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Results obtained with the scalar product method are reported for the rapidity range $\vert y \vert <$ 0.5 as a function of transverse momentum, $p_\text{T}$, at different collision centrality intervals between 0-70%, including ultra-central (0-1%) collisions for $\pi^{\pm}$, ${\rm K}^{\pm}$, and ${\rm p+\overline{p}}$. For $p_\text{T} < 3$ GeV$\kern-0.05em/\kern-0.02em c$, the flow coefficients exhibit a particle mass dependence. At intermediate transverse momenta ($3<p_\text{T}<$~8-10 GeV$\kern-0.05em/\kern-0.02em c$), particles show an approximate grouping according to their type (i.e., mesons and baryons). The $\phi$-meson $v_2$, which tests both particle mass dependence and type scaling, follows ${\rm p+\overline{p}}$ $v_2$ at low $p_\text{T}$ and $\pi^{\pm}$ $v_2$ at intermediate $p_\text{T}$. The evolution of the shape of $v_{\rm n}(p_{\mathrm{T}})$ as a function of centrality and harmonic number $n$ is studied for the various particle species. Flow coefficients of $\pi^{\pm}$, ${\rm K}^{\pm}$, and ${\rm p+\overline{p}}$ for $p_\text{T}<3$ GeV$\kern-0.05em/\kern-0.02em c$ are compared to iEBE-VISHNU and MUSIC hydrodynamical calculations coupled to a hadronic cascade model (UrQMD). The iEBE-VISHNU calculations describe the results fairly well for $p_\text{T} < 2.5$ GeV$\kern-0.05em/\kern-0.02em c$, while MUSIC calculations reproduce the measurements for $p_\text{T} < 1$ GeV$\kern-0.05em/\kern-0.02em c$. A comparison to $v_{\rm n}$ coefficients measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is also provided.

0 data tables match query

Measurement of Z$^0$-boson production at large rapidities in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
Phys.Lett.B 780 (2018) 372-383, 2018.
Inspire Record 1639439 DOI 10.17182/hepdata.82813

The production of Z$^0$ bosons at large rapidities in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV is reported. Z$^0$ candidates are reconstructed in the dimuon decay channel (${\rm Z}^0 \rightarrow \mu^+\mu^-$), based on muons selected with pseudo-rapidity $-4.0<\eta<-2.5$ and $p_{\rm T}>20$ GeV/$c$. The invariant yield and the nuclear modification factor, $R_{\rm AA}$, are presented as a function of rapidity and collision centrality. The value of $R_{\rm AA}$ for the 0-20% central Pb-Pb collisions is $0.67 \pm 0.11 \, \mbox{(stat.)} \, \pm 0.03 \, \mbox{(syst.)} \, \pm 0.06 \, \mbox{(corr. syst.)}$, exhibiting a deviation of $2.6 \sigma$ from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by $2.3\sigma$ in the 0-90% centrality class and by $3\sigma$ in the 0-20% central collisions.

0 data tables match query

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 11 (2018) 013, 2018.
Inspire Record 1657384 DOI 10.17182/hepdata.86210

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For central collisions, the $p_{\rm T}$ spectra are suppressed by more than a factor of 7 around 6-7 GeV/$c$ with a significant reduction in suppression towards higher momenta up to 30 GeV/$c$. The nuclear modification factor $R_{\rm pPb}$, constructed from the pp and p-Pb spectra measured at the same collision energy, is consistent with unity above 8 GeV/$c$. While the spectra in both pp and Pb-Pb collisions are substantially harder at $\sqrt{s_{\rm NN}} = 5.02$ TeV compared to 2.76 TeV, the nuclear modification factors show no significant collision energy dependence. The obtained results should provide further constraints on the parton energy loss calculations to determine the transport properties of the hot and dense QCD matter.

0 data tables match query

Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at $\mathbf{\sqrt{{\textit s}_\text{NN}}} = \mathbf{5.02}$ and $\mathbf{2.76}$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 07 (2018) 103, 2018.
Inspire Record 1666817 DOI 10.17182/hepdata.83737

Measurements of anisotropic flow coefficients with two- and multi-particle cumulants for inclusive charged particles in Pb-Pb collisions at $\sqrt{{\textit s}_\text{NN}} = 5.02$ and 2.76 TeV are reported in the pseudorapidity range $|\eta| < 0.8$ and transverse momentum $0.2 < p_\text{T} < 50$ GeV/$c$. The full data sample collected by the ALICE detector in 2015 (2010), corresponding to an integrated luminosity of 12.7 (2.0) $\mu$b$^{-1}$ in the centrality range 0-80%, is analysed. Flow coefficients up to the sixth flow harmonic ($v_6$) are reported and a detailed comparison among results at the two energies is carried out. The $p_\text{T}$ dependence of anisotropic flow coefficients and its evolution with respect to centrality and harmonic number $n$ are investigated. An approximate power-law scaling of the form $v_n(p_\text{T}) \sim p_\text{T}^{n/3}$ is observed for all flow harmonics at low $p_\text{T}$ ($0.2 < p_\text{T} < 3$ GeV/$c$). At the same time, the ratios $v_n/v_m^{n/m}$ are observed to be essentially independent of $p_\text{T}$ for most centralities up to about $p_\text{T} = 10$ GeV/$c$. Analysing the differences among higher-order cumulants of elliptic flow ($v_2$), which have different sensitivities to flow fluctuations, a measurement of the standardised skewness of the event-by-event $v_2$ distribution $P(v_2)$ is reported and constraints on its higher moments are provided. The Elliptic Power distribution is used to parametrise $P(v_2)$, extracting its parameters from fits to cumulants. The measurements are compared to different model predictions in order to discriminate among initial-state models and to constrain the temperature dependence of the shear viscosity to entropy-density ratio.

0 data tables match query

Evidence for top quark production in nucleus-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 222001, 2020.
Inspire Record 1802092 DOI 10.17182/hepdata.93878

Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10$^{-6}$ seconds, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first-ever evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon centre-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production ($\sigma_\mathrm{t\bar{t}}$) via the decay into charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, $\sigma_\mathrm{t\bar{t}} = $ 2.54 $^{+0.84}_{-0.74}$ and 2.03 $^{+0.71}_{-0.64}$ $\mu$b, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.

0 data tables match query

First measurement of quarkonium polarization in nuclear collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 815 (2021) 136146, 2021.
Inspire Record 1797469 DOI 10.17182/hepdata.102403

The polarization of inclusive J/$\psi$ and $\Upsilon(1{\rm S})$ produced in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=5.02$ TeV at the LHC is measured with the ALICE detector. The study is carried out by reconstructing the quarkonium through its decay to muon pairs in the rapidity region $2.5<y<4$ and measuring the polar and azimuthal angular distributions of the muons. The polarization parameters $\lambda_{\theta}$, $\lambda_{\phi}$ and $\lambda_{\theta\phi}$ are measured in the helicity and Collins-Soper reference frames, in the transverse momentum interval $2<p_{\rm T}<10$ GeV/$c$ and $p_{\rm T}<15$ GeV/$c$ for the J/$\psi$ and $\Upsilon(1{\rm S})$, respectively. The polarization parameters for the J/$\psi$ are found to be compatible with zero, within a maximum of about two standard deviations at low $p_{\rm T}$, for both reference frames and over the whole $p_{\rm T}$ range. The values are compared with the corresponding results obtained for pp collisions at $\sqrt{s}=7$ and 8 TeV in a similar kinematic region by the ALICE and LHCb experiments. Although with much larger uncertainties, the polarization parameters for $\Upsilon(1{\rm S})$ production in Pb-Pb collisions are also consistent with zero.

0 data tables match query

$\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 04 (2018) 108, 2018.
Inspire Record 1645239 DOI 10.17182/hepdata.81727

The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.

0 data tables match query

Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 076, 2020.
Inspire Record 1797444 DOI 10.17182/hepdata.97372

Measurement of Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity $-4 < \eta_{\mu} < -2.5$ and transverse momentum $p_{\rm T}^{\mu} > 20$ GeV/$c$ in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass $60 < m^{\mu\mu} < 120$ GeV$c^2$ and rapidity $2.5 < y_{cms}^{\mu\mu} < 4$. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward ($-4.46< y_{cms}^{\mu\mu}<-2.96$) and forward ($2.03< y_{cms}^{\mu\mu}<3.53$) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a $3.4\sigma$ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.

0 data tables match query

Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 125 (2020) 012301, 2020.
Inspire Record 1762362 DOI 10.17182/hepdata.127978

The first evidence of spin alignment of vector mesons ($K^{*0}$ and $\phi$) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element $\rho_{00}$ is measured at midrapidity ($|y| <$ 0.5) in Pb-Pb collisions at a center-of-mass energy ($\sqrt{s_{\rm NN}}$) of 2.76 TeV with the ALICE detector. $\rho_{00}$ values are found to be less than 1/3 (1/3 implies no spin alignment) at low transverse momentum ($p_{\rm T} <$ 2 GeV/$c$) for $K^{*0}$ and $\phi$ at a level of 3$\sigma$ and 2$\sigma$, respectively. No significant spin alignment is observed for the $K^0_S$ meson (spin = 0) in Pb-Pb collisions and for the vector mesons in $pp$ collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination.

0 data tables match query