Measurement of nuclear effects on $\psi\rm{(2S)}$ production in p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2020) 237, 2020.
Inspire Record 1785315 DOI 10.17182/hepdata.96029

Inclusive $\psi$(2S) production is measured in p-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm{NN}}}=8.16$ TeV, using the ALICE detector at the CERN LHC. The production of $\psi$(2S) is studied at forward ($2.03 < y_{\rm cms} < 3.53$) and backward ($-4.46 < y_{\rm cms} < -2.96$) centre-of-mass rapidity and for transverse momentum $p_{\rm{T}}$ $<$ 12 GeV/$c$ via the decay to muon pairs. In this paper, we report the integrated as well as the $y_{\rm cms}$- and $p_{\rm T}$-differential inclusive production cross sections. Nuclear effects on $\psi$(2S) production are studied via the determination of the nuclear modification factor that shows a strong suppression at both forward and backward centre-of-mass rapidities. Comparisons with corresponding results for inclusive J/$\psi$ show a similar suppression for the two states at forward rapidity (p-going direction), but a stronger suppression for $\psi$(2S) at backward rapidity (Pb-going direction). As a function of $p_{\rm T}$, no clear dependence of the nuclear modification factor is found. The relative size of nuclear effects on $\psi$(2S) production compared to J/$\psi$ is also studied via the double ratio of production cross sections $[\sigma_{\psi(2S)}/\sigma_{\rm{J/}\psi}]_{\rm pPb}/[\sigma_{\psi(2S)}/\sigma_{\rm{J/}\psi}]_{\rm pp}$ between p-Pb and pp collisions. The results are compared with theoretical models that include various effects related to the initial and final state of the collision system and also with previous measurements at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV.

0 data tables match query

Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 807 (2020) 135595, 2020.
Inspire Record 1784454 DOI 10.17182/hepdata.95735

Azimuthal anisotropies of muons from charm and bottom hadron decays are measured in Pb+Pb collisions at $\sqrt{s_\mathrm{NN}}= 5.02$ TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2018 with integrated luminosities of $0.5~\mathrm{nb}^{-1}$ and $1.4~\mathrm{nb^{-1}}$, respectively. The kinematic selection for heavy-flavor muons requires transverse momentum $4 < p_\mathrm{T} < 30$ GeV and pseudorapidity $|\eta|<2.0$. The dominant sources of muons in this $p_\mathrm{T}$ range are semi-leptonic decays of charm and bottom hadrons. These heavy-flavor muons are separated from light-hadron decay muons and punch-through hadrons using the momentum imbalance between the measurements in the tracking detector and in the muon spectrometers. Azimuthal anisotropies, quantified by flow coefficients, are measured via the event-plane method for inclusive heavy-flavor muons as a function of the muon $p_\mathrm{T}$ and in intervals of Pb+Pb collision centrality. Heavy-flavor muons are separated into contributions from charm and bottom hadron decays using the muon transverse impact parameter with respect to the event primary vertex. Non-zero elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients are extracted for charm and bottom muons, with the charm muon coefficients larger than those for bottom muons for all Pb+Pb collision centralities. The results indicate substantial modification to the charm and bottom quark angular distributions through interactions in the quark-gluon plasma produced in these Pb+Pb collisions, with smaller modifications for the bottom quarks as expected theoretically due to their larger mass.

0 data tables match query

(Anti-)Deuteron production in pp collisions at $\sqrt{s}=13$ TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 889, 2020.
Inspire Record 1784203 DOI 10.17182/hepdata.97183

The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at $\sqrt{s}=13$ TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity ($\rm{d} N_{ch}/\rm{d}\eta\sim26$) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and Statistical Hadronisation Models (SHM).

6 data tables match query

Transverse momentum distributions of deuterons in the INEL>0 pp collisions

Transverse momentum distributions of deuterons in the INEL pp collisions

Transverse momentum distributions of anti-deuterons in the INEL>0 pp collisions

More…

Multiplicity dependence of $\pi$, K, and p production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 693, 2020.
Inspire Record 1784041 DOI 10.17182/hepdata.96821

This paper presents the measurements of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{p}$ and $\bar{\rm{p}}$ transverse momentum ($p_{\rm{T}}$) spectra as a function of charged-particle multiplicity density in proton-proton (pp) collisions at $\sqrt{s}$ = 13 TeV with the ALICE detector at the LHC. Such study allows us to isolate the center-of-mass energy dependence of light-flavour particle production. The measurements reported here cover a $p_{\rm{T}}$ range from 0.1 GeV/$c$ to 20 GeV/$c$ and are done in the rapidity interval $|y|<0.5$. The $p_{\rm{T}}$-differential particle ratios exhibit an evolution with multiplicity, similar to that observed in pp collisions at $\sqrt{s}$ = 7 TeV, which is qualitatively described by some of the hydrodynamical and pQCD-inspired models discussed in this paper. Furthermore, the $p_{\rm{T}}$-integrated hadron-to-pion yield ratios measured in pp collisions at two different center-of-mass energies are consistent when compared at similar multiplicities. This also extends to strange and multistrange hadrons, suggesting that, at LHC energies, particle hadrochemistry scales with particle multiplicity the same way under different collision energies and colliding systems.

0 data tables match query

Coherent photoproduction of $\rho^{0}$ vector mesons in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2020) 035, 2020.
Inspire Record 1782227 DOI 10.17182/hepdata.95218

Cross sections for the coherent photoproduction of $\rho^{0}$ vector mesons in ultra-peripheral Pb-Pb collisions at $ \sqrt{s_{\mathrm{NN}}}= 5.02$ TeV are reported. The measurements, which rely on the $\pi^+\pi^-$ decay channel, are presented in three regions of rapidity covering the range $|y|<0.8$. For each rapidity interval, cross sections are shown for different nuclear-breakup classes defined according to the presence of neutrons measured in the zero-degree calorimeters. The results are compared with predictions based on different models of nuclear shadowing. Finally, the observation of a coherently produced resonance-like structure with a mass around 1.7 GeV/$c^2$ and a width of about 140 MeV/$c^2$ is reported and compared with similar observations from other experiments.

0 data tables match query

Proton number fluctuations in $\sqrt{s_{NN}}$ = 2.4 GeV Au+Au collisions studied with HADES

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Rev.C 102 (2020) 024914, 2020.
Inspire Record 1781493 DOI 10.17182/hepdata.96305

We present an analysis of proton number fluctuations in $\sqrt{s_{NN}}$ = 2.4 GeV Au+Au collisions measured with the High-Acceptance DiElectron Spectrometer (HADES) at GSI. With the help of extensive detector simulations done with IQMD transport model events including nuclear clusters, various nuisance effects influencing the observed proton cumulants have been investigated. Acceptance and efficiency corrections have been applied as a function of fine grained rapidity and transverse momentum bins, as well as considering local track density dependencies. Next, the effects of volume changes within particular centrality selections have been considered and beyond-leading-order corrections have been applied to the data. The efficiency and volume corrected proton number moments and cumulants Kn of orders n = 1, . . . , 4 have been obtained as a function of centrality and phase-space bin, as well as the corresponding correlators C_n . We find that the observed correlators show a power-law scaling with the mean number of protons, i.e. $C_n \propto <N>^n$, indicative of mostly long-range multi-particle correlations in momentum space. We also present a comparison of our results with Au+Au collision data obtained at RHIC at similar centralities, but higher $\sqrt{s_{NN}}$.

0 data tables match query

Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 05 (2020) 085, 2020.
Inspire Record 1778342 DOI 10.17182/hepdata.94869

Anisotropic flow coefficients, $v_n$, non-linear flow mode coefficients, $\chi_{n,mk}$, and correlations among different symmetry planes, $\rho_{n,mk}$ are measured in Pb-Pb collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval $0.2<p_\rm{T}<5.0$ GeV/$c$ within the pseudorapidity interval $0.4<|\eta|<0.8$ as a function of collision centrality. The $v_n$ coefficients and $\chi_{n,mk}$ and $\rho_{n,mk}$ are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.

0 data tables match query

$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

0 data tables match query

Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

0 data tables match query

Measurement of D$^0$-meson + hadron two-dimensional angular correlations in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 014905, 2020.
Inspire Record 1767419 DOI 10.17182/hepdata.95209

Open heavy flavor hadrons provide unique probes of the medium produced in ultra-relativistic heavy-ion collisions. Due to their increased mass relative to light-flavor hadrons, long lifetime, and early production in hard-scattering interactions, they provide access to the full evolution of the partonic medium formed in heavy-ion collisions. This paper reports two-dimensional (2D) angular correlations between neutral $D$-mesons and unidentified charged particles produced in minimum-bias Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. $D^0$ and $\bar{D}^0$ mesons are reconstructed via their weak decay to $K^{\mp} \pi^{\pm}$ using the Heavy Flavor Tracker (HFT) in the Solenoidal Tracker at RHIC (STAR) experiment. Correlations on relative pseudorapidity and azimuth $(\Delta\eta,\Delta\phi)$ are presented for peripheral, mid-central and central collisions with $D^0$ transverse momentum from 2 to 10 GeV/$c$. Attention is focused on the 2D peaked correlation structure near the triggered $D^0$-meson, the {\em near-side} (NS) peak, which serves as a proxy for a charm-quark containing jet. The correlated NS yield of charged particles per $D^0$-meson and the 2D widths of the NS peak increase significantly from peripheral to central collisions. These results are compared with similar correlations using unidentified charged particles, consisting primarily of light-flavor hadrons, at similar trigger particle momenta. Similar per-trigger yields and widths of the NS correlation peak are observed. The present results provide additional evidence that $D^0$-mesons undergo significant interactions with the medium formed in heavy-ion collision and show, for the first time, significant centrality evolution of the NS 2D peak in the correlations of particles associated with a heavy-flavor hadron produced in these collisions.

0 data tables match query