Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 128 (2022) 092301, 2022.
Inspire Record 1869023 DOI 10.17182/hepdata.127969

The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.

0 data tables match query

Deviation from quark-number scaling of the anisotropy parameter v_2 of pions, kaons, and protons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 85 (2012) 064914, 2012.
Inspire Record 1093596 DOI 10.17182/hepdata.141645

Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).

0 data tables match query

Inclusive Cross-Sections for 180-Degree Production of High-Energy Protons, Deuterons, and Tritons in p-Nucleus Collisions at 600-MeV and 800-MeV

Frankel, S. ; Frati, W. ; Van Dyck, O. ; et al.
Phys.Rev.Lett. 36 (1976) 642, 1976.
Inspire Record 100888 DOI 10.17182/hepdata.21102

The inclusive cross sections, measured up to large values of effective mass (≡q22ν), are well fitted by dσd3p=Bxexp(−αxp22mx). Values of Bx and αx are given for Be, C, Cu, and Ta at the incident proton energy of 600 MeV and for Ag, Ta, and Pt at 800 MeV. Extremely large dp and tp ratios and large A and q2 dependences of the relative cross sections are observed.

0 data tables match query

Characteristics of neutral pion production process in pi- Xe nuclear collisions at 3.5-GeV/c momentum

Strugalski, Z. ; Sredniawa, B. ; El-Sharkawy, S. ; et al.
JINR-E1-90-459, 1990.
Inspire Record 303170 DOI 10.17182/hepdata.39384

None

0 data tables match query