Study of the energy flow in sulphur and oxygen nucleus collisions at 60-GeV/nucleon and 200-GeV/nucleon

The NA35 collaboration Bächler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 52 (1991) 239-263, 1991.
Inspire Record 323583 DOI 10.17182/hepdata.1434

We report on a systematic study of midrapidity transverse energy production and forward energy flow in interactions of16O and32S projectiles with S, Cu, Ag and Au targets at 60 and 200 GeV/nucleon. The variation of the shape of theET distributions with target and projectile mass can be understood from collision geometry. AverageET values determined for central collisions show an increasing stopping power for heavier target nuclei. A higher relative stopping is observed at 60 GeV/nucleon than at 200 GeV/nucleon. Bjorken estimates of the energy density reach approximately 3 GeV/fm3 in highET events at 200 GeV/nucleon with16O and32S projectiles. The systematics of the data and the shapes ofET and pseudorapidity distributions are well described by the Lund model Fritiof.

0 data tables match query

Central Collisions of 14.6-{GeV}/nucleon, 60-{GeV}/nucleon, and 200-{GeV}/nucleon $^{16}$O Nuclei in Nuclear Emulsion

Barbier, L.M. ; Freier, P.S. ; Holynski, R. ; et al.
Phys.Rev.Lett. 60 (1988) 405-407, 1988.
Inspire Record 264260 DOI 10.17182/hepdata.2969

Central collisions of O16 nuclei with the Ag107 and Br80 nuclei in nuclear emulsion at 14.6, 60, and 200 GeV/nucleon are compared with proton-emulsion data at equivalent energies. The multiplicities of produced charged secondaries are consistent with the predictions of superposition models. At 200 GeV/nucleon the central particle pseudorapidity density is 58±2 for those events with multiplicities exceeding 200 particles.

0 data tables match query

Measurements with photonic events in e+ e- collisions at centre-of-mass energies of 130-GeV to 140-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Phys.Lett.B 377 (1996) 222-234, 1996.
Inspire Record 418011 DOI 10.17182/hepdata.47829

Cross-sections and angular distributions for the production of events with single and multiple photons are measured from data recorded with the OPAL detector at the recently upgraded LEP collider. The measured cross-sections are generally consistent with Standard Model expectations for the e + e − → ν v γ(γ) and e + e − → γγ ( γ ) processes. Six events with an acoplanar photon pair and large missing mass are found. The observed number of events is larger than expected from e + e − → ν ν γγ ; however, the missing mass distribution is compatible with the Z 0 resonance. Deviations from QED are constrained by the data on e + e − → γγ ( γ ). Lower limits are set at 95% confidence level on the QED cut-off parameters Λ + and Λ − of 152 GeV and 142 GeV, respectively, and also on the mass of an excited electron of 147 GeV.

0 data tables match query

A Study of single W production in e+ e- collisions at S**(1/2) = 161-GeV to 183-GeV

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Phys.Lett.B 462 (1999) 389-400, 1999.
Inspire Record 503551 DOI 10.17182/hepdata.49108

Single W production is studied in the data recorded with the ALEPH detector at LEP at centre-of-mass energies between 161 and 183 GeV. The cross section is measured to be σ W =0.41±0.17(stat.)±0.04(syst.) pb at 183 GeV, consistent with the Standard Model expectation. Limits on non-standard WW γ couplings are deduced as −1.6<κ γ <1.5 (λ γ =0) and −1.6<λ γ <1.6 (κ γ =1) at 95% C.L. A search for effectively invisible decays of the W boson in W pair production is performed, leading to an upper limit on the branching ratio of 1.3% ( Γ inv =27 MeV ) at 95% C.L.

0 data tables match query

Nuclear modification factor for charged pions and protons at forward rapidity in central Au + Au collisions at 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 650 (2007) 219-223, 2007.
Inspire Record 729167 DOI 10.17182/hepdata.89447

We present spectra of charged pions and protons in 0-10% central Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV at mid-rapidity ($y=0$) and forward pseudorapidity ($\eta=2.2$) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au+Au collisions at both $y=0$ and $\eta=2.2$ exhibit suppression for charged pions but not for (anti-)protons at intermediate $p_T$. The $\bar{p}/\pi^-$ ratios have been measured up to $p_T\sim 3$ GeV/$c$ at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate $p_T$ range are (anti-)protons at both mid-rapidity and $\eta = 2.2$.

0 data tables match query

Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 110 (2013) 142301, 2013.
Inspire Record 1210463 DOI 10.17182/hepdata.102939

Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.

0 data tables match query

rho0 production and possible modification in Au + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 092301, 2004.
Inspire Record 624475 DOI 10.17182/hepdata.99052

We report results on rho(770)^0 -> pi+pi- production at midrapidity in p+p and peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV. This is the first direct measurement of rho(770)^0 -> pi+pi- in heavy-ion collisions. The measured rho^0 peak in the invariant mass distribution is shifted by ~40 MeV/c^2 in minimum bias p+p interactions and ~70 MeV/c^2 in peripheral Au+Au collisions. The rho^0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho^0 meson mass, width, and shape due to phase space and dynamical effects are discussed.

0 data tables match query

Energy dependence of $J/\psi$ production in Au+Au collisions at $\sqrt{s_{NN}} =$ 39, 62.4 and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 771 (2017) 13-20, 2017.
Inspire Record 1478040 DOI 10.17182/hepdata.104506

The inclusive $J/\psi$ transverse momentum ($p_{T}$) spectra and nuclear modification factors are reported at midrapidity ($|y|<1.0$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of $J/\psi$ production, with respect to {\color{black}the production in $p+p$ scaled by the number of binary nucleon-nucleon collisions}, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct $J/\psi$ production due to the color screening effect and $J/\psi$ regeneration from recombination of uncorrelated charm-anticharm quark pairs.

0 data tables match query

Suppression of hadrons with large transverse momentum in central Au+Au collisions at s(NN)**(1/2) = 130-GeV

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 022301, 2002.
Inspire Record 562409 DOI 10.17182/hepdata.110700

Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c $< p_T <$ 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV. At high $p_T$ the spectra from peripheral nuclear collisions are consistent with the naive expectation of scaling the spectra from p+p collisions by the average number of binary nucleon- nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary- scaled p+p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear effect in central nuclear collisions at RHIC energies.

0 data tables match query

Measurements of Proton High Order Cumulants in 3 GeV Au+Au Collisions and Implications for the QCD Critical Point

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 128 (2022) 202303, 2022.
Inspire Record 1981670 DOI 10.17182/hepdata.115559

We report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at 3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity ($y$) and transverse momentum ($p_{\rm T}$) within $-0.5 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$. In the most central 0--5% collisions, a proton cumulant ratio is measured to be $C_4/C_2=-0.85 \pm 0.09 ~(\rm stat.) \pm 0.82 ~(\rm syst.)$, which is less than unity, the Poisson baseline. The hadronic transport UrQMD model reproduces our $C_4/C_2$ in the measured acceptance. Compared to higher energy results and the transport model calculations, the suppression in $C_4/C_2$ is consistent with fluctuations driven by baryon number conservation and indicates an energy regime dominated by hadronic interactions. These data imply that the QCD critical region, if created in heavy-ion collisions, could only exist at energies higher than 3 GeV.

0 data tables match query