Measurement of flow harmonics with multi-particle cumulants in Pb+Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3157, 2014.
Inspire Record 1311487 DOI 10.17182/hepdata.65771

ATLAS measurements of the azimuthal anisotropy in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV are shown using a dataset of approximately 7 $\mu$b$^{-1}$ collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta $0.5<p_T<20$ GeV and in the pseudorapidity range $|\eta|<2.5$. The anisotropy is characterized by the Fourier coefficients, $v_n$, of the charged-particle azimuthal angle distribution for n = 2-4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the $v_n$ coefficients are presented. The elliptic flow, $v_2$, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, $v_3$ and $v_4$, are determined with two- and four-particle cumulants. Flow harmonics $v_n$ measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to $v_n$ measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.

0 data tables match query

Measurement of the distributions of event-by-event flow harmonics in lead--lead collisions at sqrt(s_NN)=2.76 TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 11 (2013) 183, 2013.
Inspire Record 1233359 DOI 10.17182/hepdata.62783

The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5<pT<1 GeV and pT>1 GeV. When these distributions are rescaled to the same mean values, the adjusted shapes are found to be nearly the same for these two pT ranges. The v_n distributions are compared with the eccentricity distributions from two models for the initial collision geometry: a Glauber model and a model that includes corrections to the initial geometry due to gluon saturation effects. Both models fail to describe the experimental data consistently over most of the measured centrality range.

0 data tables match query