A Comparison of Hadron Production in $p \bar{p}$ and $p p$ Collisions in the Central Region at $\sqrt{s}=53$-{GeV}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Nucl.Phys.B 228 (1983) 409-423, 1983.
Inspire Record 190653 DOI 10.17182/hepdata.37131

We have studied the inclusive production of the hadrons π ± , K ± , p, p , Λ, Λ , ρ and ⋉ in the central region at the ISR s = 53 GeV , in both pp and p p collisions. Differences are observed only for K ± , p, and p production. We then study also correlations between low- p T pp and p p pairs in the two types of collisions, separating the contribution from baryon pair production and from the incident particles (stopping protons). We observe a positive correlation between two stopping protons; between the production of two pairs, and between a stopping proton and a pair production, there are negative correlations.

0 data tables match query

Centrality determination of Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044909, 2013.
Inspire Record 1215085 DOI 10.17182/hepdata.66916

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection, and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

0 data tables match query

Charged Particle Multiplicity Distributions in p p Collisions at ISR Energies

The Aachen-CERN-Heidelberg-Munich collaboration Thome, W. ; Eggert, K. ; Giboni, K. ; et al.
Nucl.Phys.B 129 (1977) 365, 1977.
Inspire Record 120863 DOI 10.17182/hepdata.55890

We present the first direct measurements of charged-particle multiplicity distributions for pp collisions at ISR energies. The measurements are performed by means of a streamer chamber detector with large solid-angle coverage and excellent multitrack efficiency. Particle densities are observed to rise in the central region as s increases. The multiplicity distributions in this region deviate from a Poisson Law, thus giving evidence for correlations. These correlations are of the same type as those obtained from clustering of the collision products. The mean charged multiplicity over the full rapidity range increases faster than log s . Our data do not support an early onset of KNO multiplicity scaling.

0 data tables match query

Charged particle transverse momentum spectra in pp collisions at sqrt(s) = 0.9 and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 08 (2011) 086, 2011.
Inspire Record 896764 DOI 10.17182/hepdata.57523

The charged particle transverse momentum (pT) spectra are presented for pp collisions at sqrt(s)=0.9 and 7 TeV. The data samples were collected with the CMS detector at the LHC and correspond to integrated luminosities of 231 inverse microbarns and 2.96 inverse picobarns, respectively. Calorimeter-based high-transverse-energy triggers are employed to enhance the statistical reach of the high-pT measurements. The results are compared with both leading-order QCD and with an empirical scaling of measurements at different collision energies using the scaling variable xT = 2 pT/sqrt(s) over the pT range up to 200 GeV/c. Using a combination of xT scaling and direct interpolation at fixed pT, a reference transverse momentum spectrum at sqrt(s)=2.76 TeV is constructed, which can be used for studying high-pT particle suppression in the dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy.

0 data tables match query

Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

0 data tables match query

Charged-particle multiplicity measurement with Reconstructed Tracks in pp Collisions at $\sqrt{s}$ = 0.9 and 7 TeV with ALICE at the LHC

The ALICE collaboration
ALICE-PUBLIC-2013-001, 2013.
Inspire Record 1387699 DOI 10.17182/hepdata.62030

This note describes the details of the analysis of charged-particle pseudorapidity densities and multiplicity distributions measured by the ALICE detector in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV in specific phase space regions. The primary goal of the analysis is to provide reference measurements for Monte Carlo tuning. The pseudorapidity range |h| < 0.8 is considered and a lower $p_T$ cut is applied, at 0.15, 0.5 GeV/c and at 1 GeV/c. The choice of such phase space regions to measure the charged-particle multiplicity allows a direct comparison with the analogous results obtained by other LHC collaborations, namely ATLAS and CMS. The class of events considered are those having at least one charged particle in the kinematical ranges just described. In the note, the analysis procedure is presented, together with the corrections applied to the data, and the systematic uncertainty evaluation. The comparison of the results with different Monte Carlo generators is also shown.

0 data tables match query

Energy Dependence of the Transverse Momentum Distributions of Charged Particles in pp Collisions Measured by ALICE

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 73 (2013) 2662, 2013.
Inspire Record 1241422 DOI 10.17182/hepdata.61787

Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

0 data tables match query

Event-by-event mean $p_{\rm T}$ fluctuations in pp and Pb-Pb collisions at the LHC

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 74 (2014) 3077, 2014.
Inspire Record 1307102 DOI 10.17182/hepdata.66332

Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at $\sqrt{s}$ = 0.9, 2.76 and 7 TeV, and Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb-Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb-Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb--Pb are in qualitative agreement with previous measurements in Au-Au at lower collision energies and with expectations from models that incorporate collective phenomena.

0 data tables match query

Evidence for collectivity in pp collisions at the LHC

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 765 (2017) 193-220, 2017.
Inspire Record 1471287 DOI 10.17182/hepdata.76506

Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.

0 data tables match query

First proton--proton collisions at the LHC as observed with the ALICE detector: measurement of the charged particle pseudorapidity density at sqrt(s) = 900 GeV

The ALICE collaboration Aamodt, K ; Abel, N ; Abeysekara, U ; et al.
Eur.Phys.J.C 65 (2010) 111-125, 2010.
Inspire Record 838352 DOI 10.17182/hepdata.53751

On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |$\eta$| < 0.5, we obtain dNch/deta = 3.10 $\pm$ 0.13 (stat.) $\pm$ 0.22 (syst.) for all inelastic interactions, and dNch/deta = 3.51 $\pm$ 0.15 (stat.) $\pm$ 0.25 (syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN SppS collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

0 data tables match query