K+-Meson Production in p-p Collisions at 2.5-3.0 GeV

Hogan, W.J. ; Piroue, P.A. ; Smith, A.J.S. ;
Phys.Rev. 166 (1968) 1472-1481, 1968.
Inspire Record 54415 DOI 10.17182/hepdata.26524

Differential cross sections as a function of momentum are presented for the production of K+ mesons in p−p collisions at incident proton energies of 2.54, 2.88, and 3.03 GeV. The measurements were made at 20°, 30°, and 40° relative to the direction of the internal proton beam of the Princeton-Pennsylvania accelerator. At 2.54 GeV, the results follow closely the predictions from phase space (with 60% K+ΣN and 40% K+Λp in the final state). At 2.88 and 3.03 GeV, however, there is a definite disagreement with phase space. The data are compared to the predictions of three models: (1) a model based on the assumption that K's are produced via p+p→K++X+, where X+ is a B=2, S=−1 resonance which decays into a nucleon+hyperon; (2) the isobar model; and (3) the one-pion-exchange model. Model (1) is found to be inconclusive, model (2) is inadequate, and model (3) is partly successful in predicting total cross sections, but not in interpreting the detailed experimental observations.

0 data tables match query

Elastic Scattering and Single Meson Production in Proton-Proton Collisions at 2.85 Bev

Smith, G.A. ; Courant, H. ; Fowler, E.C. ; et al.
Phys.Rev. 123 (1961) 2160-2167, 1961.
Inspire Record 47571 DOI 10.17182/hepdata.734

The Brookhaven National Laboratory twenty-inch liquid hydrogen bubble chamber was exposed to a monoenergetic beam of 2.85-Bev protons, elastically scattered from a carbon target in the internal beam of the Cosmotron. All two-prong events, excluding strange particle events, have been studied by the Yale High-Energy Group. The remaining interactions have been studied by the Brookhaven Bubble Chamber Group. Elastic scattering was found to be mostly pure diffraction scattering at center-of-mass angles up to about thirty-five degrees. Some phase shift and/or tapering of the proton edge was required to fit the data at larger angles. No polarization effects in the proton-carbon scattering were observed using hydrogen as an analyzer of polarized protons. Nucleonic isobar formation in the T=32, J=32 state was found to account for a large part of single pion production. High-orbital angular-momentum states were found to be greatly favored in single pion production. The isobar model of Lindenbaum and Sternheimer gave good agreement with the observed nucleon and pion energy spectra. No polarization or alignment effects were observed for the isobar assumed in this model.

0 data tables match query