Measurement of the production cross-section of positive pions in p Al collisions at 12.9-GeV/c.

The HARP collaboration Catanesi, M.G. ; Muciaccia, M.T. ; Radicioni, E. ; et al.
Nucl.Phys.B 732 (2006) 1-45, 2006.
Inspire Record 695147 DOI 10.17182/hepdata.41874

A precision measurement of the double-differential production cross-section, ${{d^2 \sigma^{\pi^+}}}/{{d p d\Omega}}$, for pions of positive charge, performed in the HARP experiment is presented. The incident particles are protons of 12.9 GeV/c momentum impinging on an aluminium target of 5% nuclear interaction length. The measurement of this cross-section has a direct application to the calculation of the neutrino flux of the K2K experiment. After cuts, 210000 secondary tracks reconstructed in the forward spectrometer were used in this analysis. The results are given for secondaries within a momentum range from 0.75 GeV/c to 6.5 GeV/c, and within an angular range from 30 mrad to 210 mrad. The absolute normalization was performed using prescaled beam triggers counting protons on target. The overall scale of the cross-section is known to better than 6%, while the average point-to-point error is 8.2%.

0 data tables match query

Production of Hadrons at Large Transverse Momentum in 200-GeV, 300-GeV and 400-GeV p p and p n Collisions

Antreasyan, D. ; Cronin, J.W. ; Frisch, Henry J. ; et al.
Phys.Rev.D 19 (1979) 764-778, 1979.
Inspire Record 6860 DOI 10.17182/hepdata.24270

Measurements of the invariant cross section Ed3σd3p are presented for the production of hadrons (π, K, p, and p¯) at large transverse momentum (p⊥) by 200-, 300-, and 400-GeV protons incident on H2, D2, Be, Ti, and W targets. The measurements were made at a laboratory angle of 77 mrad, which corresponds to angles near 90° in the c.m. system of the incident proton and a single nucleon at rest. The range in p⊥ for the data is 0.77≤p⊥≤6.91 GeV/c, corresponding to values of the scaling variable x⊥=2p⊥s from 0.06 to 0.64. For p−p collisions, the pion cross sections can be represented in the region x⊥>35 by the form (1p⊥n)(1−x⊥)b, with n=8 and b=9. The ratio of π+ to π− production grows as a function of x⊥ to a value larger than 2 at x⊥≳0.5. The ratios of the production of K+ and protons to π+ and of K− and antiprotons to π− also scale with x⊥ for p−p collisions. The K±, p, and p¯ fitted values for n and b are given. Particle ratios are also presented for D2, Be, Ti, and W targets and the dependences on atomic weight (A) are discussed.

0 data tables match query