Measurement of the $ZZ$ production cross section in $pp$ collisions at $\sqrt{s}$ = 8 TeV using the $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to\ell^{-}\ell^{+}\nu\bar{\nu}$ channels with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2017) 099, 2017.
Inspire Record 1494075 DOI 10.17182/hepdata.76732

A measurement of the $ZZ$ production in the $\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $\ell^{-}\ell^{+}\nu\bar{\nu}$ channels $(\ell = e, \mu)$ in proton--proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider at CERN, using data corresponding to an integrated luminosity of 20.3 fb$^{-1}$ collected by the ATLAS experiment in 2012 is presented. The fiducial cross sections for $ZZ\to\ell^{-}\ell^{+}\ell^{\prime -}\ell^{\prime +}$ and $ZZ\to \ell^{-}\ell^{+}\nu\bar{\nu}$ are measured in selected phase-space regions. The total cross section for $ZZ$ events produced with both $Z$ bosons in the mass range 66 to 116 GeV is measured from the combination of the two channels to be $7.3\pm0.4\textrm{(stat)}\pm0.3\textrm{(syst)}\pm0.2\textrm{(lumi)}$ pb, which is consistent with the Standard Model prediction of $6.6^{+0.7}_{-0.6}$ pb. The differential cross sections in bins of various kinematic variables are presented. The differential event yield as a function of the transverse momentum of the leading $Z$ boson is used to set limits on anomalous neutral triple gauge boson couplings in $ZZ$ production.

0 data tables match query

Measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV and limits on anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 760 (2016) 448-468, 2016.
Inspire Record 1423069 DOI 10.17182/hepdata.74458

A measurement of the Z gamma to nu nu-bar gamma production cross section in pp collisions at sqrt(s) = 8 TeV is presented, using data corresponding to an integrated luminosity of 19.6 inverse femtobarns collected with the CMS detector at the LHC. This measurement is based on the observation of events with large missing energy and with a single photon with transverse momentum above 145 GeV and absolute pseudorapidity in the range |eta| < 1.44. The measured Z gamma to nu nu-bar gamma production cross section, 52.7 +/- 2.1(stat) +/- 6.4 (syst) +/- 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0 +2.4 -2.2 fb. A study of the photon transverse momentum spectrum yields the most stringent limits to date on the anomalous Z-Z-gamma and Z-gamma-gamma trilinear gauge boson couplings.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 785 (2018) 462, 2018.
Inspire Record 1674926 DOI 10.17182/hepdata.86228

A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two $\tau$ leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM+S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction $\mathcal{B}$(h $\to$ aa $\to$ 2$\tau$2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM+S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2018) 018, 2018.
Inspire Record 1673011 DOI 10.17182/hepdata.85886

A search for exotic Higgs boson decays to light pseudoscalars in the final state of two muons and two $\tau$ leptons is performed using proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Masses of the pseudoscalar boson between 15.0 and 62.5 GeV are probed, and no significant excess of data is observed above the prediction of the standard model. Upper limits are set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different types of two-Higgs-doublet models extended with a complex scalar singlet.

0 data tables match query

Search for pair production of gluinos decaying via stop and sbottom in events with $b$-jets and large missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 94 (2016) 032003, 2016.
Inspire Record 1466302 DOI 10.17182/hepdata.61814

A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.

0 data tables match query

Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 800 (2020) 135087, 2020.
Inspire Record 1744267 DOI 10.17182/hepdata.90694

A search is presented for pairs of light pseudoscalar bosons, in the mass range from 4 to 15 GeV, produced from decays of the 125 GeV Higgs boson. The decay modes considered are final states that arise when one of the pseudoscalars decays to a pair of tau leptons, and the other one either into a pair of tau leptons or muons. The search is based on proton-proton collisions collected by the CMS experiment in 2016 at a center-of-mass energy of 13 TeV that correspond to an integrated luminosity of 35.9 fb${-1}$. The 2$\mu$2$\tau$ and 4$\tau$ channels are used in combination to constrain the product of the Higgs boson production cross section and the branching fraction into 4$\tau$ final state, $\sigma\mathcal{B}$, exploiting the linear dependence of the fermionic coupling strength of pseudoscalar bosons on the fermion mass. No significant excess is observed beyond the expectation from the standard model. The observed and expected upper limits at 95% confidence level on $\sigma\mathcal{B}$, relative to the standard model Higgs boson production cross section, are set respectively between 0.022 and 0.23 and between 0.027 and 0.19 in the mass range probed by the analysis.

0 data tables match query

Measurements of the ZZ production cross sections in the 2 l 2 nu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV and combined constraints on triple gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 511, 2015.
Inspire Record 1353393 DOI 10.17182/hepdata.69984

Measurements of the ZZ production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8 TeV are presented. Candidate events for the leptonic decay mode ZZ to 2 l 2 nu, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6) inverse femtobarns at 7 (8) TeV collected with the CMS experiment. The measured cross sections, sigma(pp to ZZ) = 5.1 -1.4 +1.5 (stat) -1.1 +1.4 (syst) +/- 0.1 (lumi) pb at 7 TeV, and 7.2 -0.8 +0.8 (stat.) -1.5 +1.9 (syst) +/- 0.2 (lumi) pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the ZZ final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for ZZ in 4 l final states, yielding the most stringent constraints on the anomalous couplings.

0 data tables match query

Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 714 (2012) 136-157, 2012.
Inspire Record 1113442 DOI 10.17182/hepdata.58908

The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.

0 data tables match query

Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with $b$-tagged jets in $pp$ collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 74 (2014) 3109, 2014.
Inspire Record 1301856 DOI 10.17182/hepdata.65210

The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.

0 data tables match query

Measurement of the 4l Cross Section at the Z Resonance and Determination of the Branching Fraction of Z->4l in pp Collisions at sqrt(s) = 7 and 8 TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 112 (2014) 231806, 2014.
Inspire Record 1286892 DOI 10.17182/hepdata.64611

Measurements of four-lepton (4$\ell$, $\ell=e,\mu$) production cross sections at the $Z$ resonance in $pp$ collisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass region $m_{\ell^+\ell^-} > 5$ GeV and $80 < m_{4\ell} < 100$ GeV, the measured cross sections are $76 \pm 18 \text { (stat) } \pm 4 \text { (syst) } \pm 1.4 \text { (lumi) }$ fb and $107 \pm 9 \text{ (stat) } \pm 4 \text{ (syst) } \pm 3.0 \text { (lumi) }$ fb at $\sqrt s$ = 7 and 8 TeV, respectively. By subtracting the non-resonant 4$\ell$ production contributions and normalizing with $Z\rightarrow \mu^+\mu^-$ events, the branching fraction for the $Z$ boson decay to $4\ell$ is determined to be $\left( 3.20 \pm 0.25\text{ (stat)} \pm 0.13\text{ (syst)} \right) \times 10^{-6}$, consistent with the Standard Model prediction.

0 data tables match query