Data on the mean multiplicity of strange hadrons produced in minimum bias proton--proton and central nucleus--nucleus collisions at momenta between 2.8 and 400 GeV/c per nucleon have been compiled. The multiplicities for nucleon--nucleon interactions were constructed. The ratios of strange particle multiplicity to participant nucleon as well as to pion multiplicity are larger for central nucleus--nucleus collisions than for nucleon--nucleon interactions at all studied energies. The data at AGS energies suggest that the latter ratio saturates with increasing masses of the colliding nuclei. The strangeness to pion multiplicity ratio observed in nucleon--nucleon interactions increases with collision energy in the whole energy range studied. A qualitatively different behaviour is observed for central nucleus--nucleus collisions: the ratio rapidly increases when going from Dubna to AGS energies and changes little between AGS and SPS energies. This change in the behaviour can be related to the increase in the entropy production observed in central nucleus-nucleus collisions at the same energy range. The results are interpreted within a statistical approach. They are consistent with the hypothesis that the Quark Gluon Plasma is created at SPS energies, the critical collision energy being between AGS and SPS energies.
Data on the mean multiplicity ofπ- produced in minimum bias proton-proton, proton-neutron and proton-nucleus interactions as well as central nucleus-nucleus collisions at momenta of 1.4–400 GeV/c per nucleon have been compiled and studied. The results for neutron-neutron and nucleon-nucleon interactions were then constructed. The dependence of the mean pion multiplicity in proton-nucleus interactions and central collisions of identical nuclei are studied as a function of the collision energy and the nucleus mass number. The number of produced pions per participant nucleon in central collisions of identical nuclei is found to be independent of the number of participants at a fixed incident momentum per nucleon. The mean multiplicity of negatively charged hadrons per participant nucleon for central nucleus-nucleus collisions is lower by about 0.12 than the corresponding multiplicity for nucleon-nucleon interactions atpLAB≲15 A·GeV/c, whereas the result at 200 A·GeV/c is above the corresponding nucleon-nucleon multiplicity. This may indicate change of the collision dynamics at high energy.
The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at $\sqrt{s}=13$ TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity ($\rm{d} N_{ch}/\rm{d}\eta\sim26$) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and Statistical Hadronisation Models (SHM).
Transverse momentum distributions of deuterons in the INEL>0 pp collisions
Transverse momentum distributions of deuterons in the INEL pp collisions
Transverse momentum distributions of anti-deuterons in the INEL>0 pp collisions
Ilford G-5 emulsions were exposed to an external, 3.5 GeY proton beam of the Berkeley Bevatron. A total of 1200 nuclear interactions of beam protons was located, of which 128 were identified as protonproton collisions. Multiple scattering, blob density, range and angle measurements were employed to determine the cross-sections for elastic and inelastic interactions as well as the identities and center-of-mass system momenta and scattering angles of secondaries from inelastic proton-proton interactions. This analysis indicates a cross-section of (8.0±2.4) mb for elastic events, (24.1±2.9) mb for two-prong inelasitc events, (7.9±1.4)mb for four-prong events and (0.6±0.3) mb for sixprong events. The mean charged pion multiplicity in inelastic interactions is 1.5±0.2 and corresponds to an average degree of inelasticity of 0.45 ±0.06. Center-of-mass system angular distributions of charged secondaries from inelastic events display a peaking for small scattering angles which is most pronounced for protons and pions from events with low secondary multiplicity. Momentum and transverse momentum distributions of secondary protons and pions from inelastic events are presented and compared with the results at other energies. The angular distribution of elastically scattered protons is found to be in fair agreement with that predicted by a uniform optical model of radius 1.25-10-13 cm and opacity 0.66.
None
Interactions between 4.15-Bev protons and the free hydrogen nuclei in nuclear emulsion are examined. The total elastic cross section from 27 events was determined to be 11.0±2.6 mb. On the basis of 113 interactions the total inelastic cross section was found to be 28.1±3.1 mb. The partial cross sections corresponding to inelastic collisions having two, four, six, and eight secondary particles were found to be respectively 16.3±2.4, 11.5±1.8, 0.2±0.1, and 0.1±0.1 mb. While the total inelastic cross section varies slowly with energy, the partial inelastic cross sections were found to be strongly energy dependent. The observed angular distribution of elastically scattered protons in the center-of-mass system was sharply peaked in the forward and backward directions, in fair agreement with calculations based on a simple optical model applicable for energies between 2 and 10 Bev. Particles produced in inelastic collisions were identified as pions or protons by measurements of energy loss and multiple scattering. For those particles identified, center-of-mass system distributions of energy, angle, and transverse momentum are presented.
Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < pT < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from di-jets in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing pT, the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side distribution can be divided into a partially suppressed head region centered at Delta phi ~ \pi, and an enhanced shoulder region centered at Delta phi ~ \pi \pm 1:1. The pT spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger pT . The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to pT < 4 GeV/c, above which both the dihadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for pT \ge 5GeV and a medium-induced component which is important for pT \le 4 GeV/c. We also quantify the role of jets at intermediate and low pT through the yield of jet-induced pairs in comparison to binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the pT magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching/ the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower pT.
RHS versus $p^b_T$ for p + p collisions for four trigger selections.
RHS versus $p^b_T$ for Au + Au collisions for four trigger selections.
We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $
The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.
The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.
The centrality dependence of e+e− invariant mass spectra within the STAR acceptance from Au+Au collisions and U+U collisions for pair pT < 0.15 GeV/c. The vertical bars on data points depict the statistical uncertainties, while the systematic uncertainties are shown as gray boxes. The hadronic cocktail yields from U+U collisions are ∼5%–12% higher than those from Au+Au collisions in given centrality bins; thus only cocktails for Au+Au collisions are shown here as solid lines, with shaded bands representing the systematic uncertainties for clarity.
The differential and total cross sections for kaon pair production in the pp->ppK+K- reaction have been measured at three beam energies of 2.65, 2.70, and 2.83 GeV using the ANKE magnetic spectrometer at the COSY-Juelich accelerator. These near-threshold data are separated into pairs arising from the decay of the phi-meson and the remainder. For the non-phi selection, the ratio of the differential cross sections in terms of the K-p and K+p invariant masses is strongly peaked towards low masses. This effect can be described quantitatively by using a simple ansatz for the K-p final state interaction, where it is seen that the data are sensitive to the magnitude of an effective K-p scattering length. When allowance is made for a small number of phi events where the K- rescatters from the proton, the phi region is equally well described at all three energies. A very similar phenomenon is discovered in the ratio of the cross sections as functions of the K-pp and K+pp invariant masses and the identical final state interaction model is also very successful here. The world data on the energy dependence of the non-phi total cross section is also reproduced, except possibly for the results closest to threshold.
The process γγ→π+π− was measured using the detector MD-1 at VEPP-4. The two-photon reactionse+e−, μ+ μ− and π+ π− pair production were separated using scintillation counters, Cherenkov counters and shower-range chambers. A radiation widthГγγ(f2(1270))=3.1±0.35±0.35 keV was obtained.
The TPC/Two-Gamma Collaboration has measured the inclusive cross section for production of charmed D ∗± mesons in photon-photon collisions. The reaction utilized was e + e - →e + e - D ∗± X, with D ∗± →D O π +- , D O →K -+ π ± , and either zero or one outgoing e ± detected. The result, σ(e + e - → e + e - D ∗± X) = 74±26±19 pb , is in agreement with the quark parton mo del prediction for e + e - → e + e - c c , combined with a Lund model for the hadronization of the charmed quarks.
Elastic and inelastic 19.8 GeV/c proton-proton collisions in nuclear emulsion are examined using an external proton beam of the CERN Proton Synchrotron. Multiple scattering, blob density, range and angle measurements give the momentum spectra and angular distributions of secondary protons and pions. The partial cross-sections corresponding to inelastic interactions having two, four, six, eight, ten and twelve charged secondaries are found to be, respectively, (16.3±8.4) mb, (11.5 ± 6.0) mb, (4.3 ± 2.5) mb, (1.9 ± 1.3) mb, (0.5 ± 0.5) mb and (0.5±0.5)mb. The elastic cross-section is estimated to be (4.3±2.5) mb. The mean charged meson multiplicity for inelastic events is 3.7±0.5 and the average degree of inelasticity is 0.35±0.09. Strong forward and backward peaking is observed in the center-of-mass system for both secondary charged pions and protons. Distributions of energy, momentum and transverse momentum for identified charged secondaries are presented and compared with the results of work at other energies and with the results of a statistical theory of proton-proton collisions.
Double differential K+cross sections have been measured in p+C collisions at 1.2, 1.5 and 2.5 GeV beam energy and in p+Pb collisions at 1.2 and 1.5 GeV. The K+ spectrum taken at 2.5 GeV can be reproduced quantitatively by a model calculation which takes into account first chance proton-nucleon collisions and internal momentum with energy distribution of nucleons according to the spectral function. At 1.2 and 1.5 GeV beam energy the K+ data excess significantly the model predictions for first chance collisions. When taking secondary processes into account the results of the calculations are in much better agreement with the data.
The cross section for K + meson production in collisions of 36 Ar ions on a 48 Ti target has been measured at an incident energy of 92 MeV per nucleon. A description of the experimental set-up is given. Twelve events attributed to monoenergetic muons following the decay of stopped kaons have been identified. From these events, one infers a production cross section of 240 pb. Data are briefly discussed.
The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.
The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.
We report new STAR measurements of mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.
$K^0_S$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The uncertainties on the spectra points are statistical and systematic combined.
$\Lambda$ and $\bar{\Lambda}$ invariant mass spectra from Au+Au $\sqrt{s_{NN}} = 200$ GeV collisions, where $|y| < 0.5$. The $\Lambda$ and $\bar{\Lambda}$ yields have not been feed down subtracted from weak decays. The uncertainties on the spectra points are statistical and systematic combined.
Using a secondary pion beam from the Argonne Zero Gradient Synchrotron we have studied the process π−p→φn in the region of the cross-section enhancement near kinematic threshold. For incident momenta between 1.6 and 2 GeV/c, we have determined production and decay angular distributions and extrapolated total cross sections from a sample of about 160 φ's above background. The production and decay distributions are consistent with isotropy over this entire incident-momentum range. The extrapolated total cross section varies between 19 and 25 μb.
The production ofπ0 andη mesons has been studied in the reactions20Ne +Al at 350 MeV/u and40Ar + Ca at 1.0 GeV/u. Rapidity distributions and transverse momentum spectra have been measured and are compared to thermal distributions.
We have studied the properties of hadron production in photon-photon scattering with tagged photons at the e + e − storage ring PETRA. A tail in the p T distribution of particles consistent with p T −4 has been observed. We show that this tail cannot be due to the hadronic part of the photon. Selected events with high p T particles are found to be consistent with a two-jet structure as expected from a point-like coupling of the photons to quarks. The lowest-order cross section predicted for γγ → q q , σ = 3 Σ e q 4 · σ γγ → μμ , is approached from above by the data at large transverse momenta.
Inclusive π − spectra have been measured for 14 N+C collisions at 41 A , 67 A , 80 A and 135 A MeV, the lowest energies measured for the charged pion. The cross sections fall exponentially with T π and the exponential slope factors at 90° in the nucleon-nucleon center of mass frame are determined. Energy distributions below a beam energy of 100 A MeV are less steep than expected from the monotonic decrease of the slope factor down to 100 A MeV. The production mechanism of energetic pions far below threshold is discussed for several models.
We have measured charged-particle production in neutron-nucleus collisions at high energy. Data on positive and negative particles produced in nuclei [ranging in atomic number (A) from beryllium to lead] are presented for essentially the full forward hemisphere of the center-of-mass system. A rough pion-proton separation is achieved for the positive spectra. Fits of the form Aα to the cross sections are presented as functions of transverse momentum, longitudinal momentum, rapidity, and pseudorapidity. It is found that α changes from ∼0.85 to ∼0.60 for laboratory rapidities ranging from 4 to 8. Trends in the data differ markedly when examined in terms of pseudorapidity rather than rapidity. Qualitatively, the major features of our data can be understood in terms of current particle-production models.
The cross section for the production of $\omega$ mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the $\omega$ at $\epsilon$=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.
None
The transverse energy cross-sectiondσ/dET has been measured in the pseudorapidity region 0.6<η<2.4 for hadron-lead collisions at 200 GeV/c incident hadron momentum. TheET distribution extends to 40 GeV, which is twice the kinematic limit forp-p collisions at the same incident beam momentum. The distribution ofET is found to shift towards low pseudorapidities with increasing total transverse energy.
We have measured antiproton production cross sections as functions of centrality in collisions of 14.6 GeV/c per nucleon Si28 ions with targets of Al, Cu, and Pb. For all targets, the antiproton yields increase linearly with the number of projectile nucleons that have interacted, and show little target dependence. We discuss the implications of this result on the production and absorption of antiprotons within the nuclear medium.
A measurement of continuum dimuon production in proton-copper collisions at 800-GeV incident energy is presented. The dimuons observed in this experiment cover the mass range from 6.5 to 18 GeV near y=0 in the proton-nucleon center-of-momentum frame. Scaling forms of the cross section for the continuum are compared with the results of other experiments in the context of the parton model and quantum chromodynamics. The present limitations of such scaling comparisons are discussed.
We report a new measurement of the pseudorapidity (eta) and transverse-energy (Et) dependence of the inclusive jet production cross section in pbar b collisions at sqrt(s) = 1.8 TeV using 95 pb**-1 of data collected with the DZero detector at the Fermilab Tevatron. The differential cross section d^2sigma/dEt deta is presented up to |eta| = 3, significantly extending previous measurements. The results are in good overall agreement with next-to-leading order predictions from QCD and indicate a preference for certain parton distribution functions.
The inclusive production of D ∗± mesons in single tagged photon-photon collisions is investigated using the JADE detector at PETRA. D ∗± mesons are reconstructed through their decay into D 0 +π ± where the D 0 decays via D 0 →Kππ 0 . The event rate and topology are compared to the expectations of c quark production in the quark-parton model: γγ→c c .
Transverse mass spectra of pions, kaons, and protons from the symmetric heavy-ion collisions 200 A GeV S+S and 158 A GeV Pb+Pb, measured in the NA44 focusing spectrometer at CERN, are presented. The mass dependence of the slope parameters provides evidence of collective transverse flow from expansion of the system in heavy-ion induced central collisions.
Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb^-1. The events are of the type ep -> eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x_gamma of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models.
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb-1. The measurements were made in the kinematic range Q^2 < 1 GeV^2, 0.20 < y < 0.85 and x_pom < 0.025, where Q^2 is the photon virtuality, y is the inelasticity and x_pom is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E_T^jet, were required to satisfy E_T^jet > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta^jet < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.
The angular and energy distributions of pions produced by 650-MeV protons and pion-nucleon correlations were studied using a liquid hydrogen bubble chamber. The present investigation indicates that the experimental angular distributions of neutral and charged pions are consis- tent with the assumption of isotopic spin conservation. The contributions of rrN subsystem states with isospin T 11'N = 7' 2 and % are measured; the contribution of the latter is 72 ± 3%.
The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.
Multihadron production by electron-positron colliding beams has been investigated for total centre-of-mass energies ranging from 1.2 to 2.4 GeV. The total cross-section, σtot ≡ σ(e+e−→π+π−+ + anything), is of the order of σμμ ≡ σ(e+e−→μ+μ−), with a threshold near 1 GeV. Partial cross-sections for the various channels are also derived. The cross-section of the specific channel e+e−→π+π−π+π− exhibits an energy dependence which is suggestive of a heavier vector meson, ρ' (mρ,≈ 1.6 GeV,Гρ, ≈ 350 Mev), having the same quantum numbers as the ρ-meson. An upper limit is given for the coupling constantfρ′ (fρ′/4π<18, wherefρ′=mρ′2e/gγρ′). Final states withG+ parity are found to be much more abundant than those withG− parity. The average multiplicity (charged plus neutral final-state pions) is found to be betweet 4 and 5 over all the energy range explored.
Data are presented on the reaction pp → pX in the range of four-momentum transfer squared 0.04< − t <0.80 GeV 2 and of c.m. energy squared 550 < s < 3880 GeV 2 . Invariant cross sections are given as a function of M 2 / s , where M is the mass of the missing system X, and of t . The cross sections are shown to scale in the variable M 2 / s , for M 2 / s > 0.01. The total diffractive cross section integrated over t and M 2 / s up to M 2 / s =0.05 rises by approximately 15% from σ dif =6.5±0.2 mb at 550 GeV 2 to σ dif =7.5±0.3 mb at 3880 GeV 2 .
Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. At a rigidity of −20 GeV/ c we measured 10 6 p , 10 3 d and one 3 He without any centrality requirements. These preliminary results together with previous measurements near central rapidity are discussed in the framework of a thermodynamical and a coalescence model.
We have studied several features of the production of charged-hardon pairs by γγ collisions. We have measured the f0 partial width Γf0→γγ(Q2) for Q2 in the range 0<Q2<1.4 GeV2/c2, and obtained Γf0→γγ=2.52±0.13±0.38 keV at Q2≈0. The measured Q2 dependence is in agreement with the generalized vector-dominance model. The cross section for γγ→(π+π−+K+K−) in the mass region 1.6≤Mππ≤2.5 GeV/c2 has also been measured and the result compared with that expected from the QCD continuum.
We report a measurement of the cross section for the process γγ → π + π − at invariant masses 500 MeV/ c 2 < m ππ <2000 MeV/ c 2 . A value for the radiative width of the f(1270) tensor meson Γ f→ γγ = 3.6 ± 0.3 ± 0.5 KeV (helicity λ = 2) has been obtained from a fit to the observed ππ mass spectrum.
We report the multiplicity and angular distributions of the low energy target-associated particles from 32S and 16O induced reactions at 200 GeV/nucleon and 16O induced reactions at 60 GeV/nucleon in emulsion. The results are compared with the Monte-Carlo Code VENUS.
None
The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.
Cross sections for the production of two isolated muons up to high di-muon masses are measured in ep collisions at HERA with the H1 detector in a data sample corresponding to an integrated luminosity of 71 pb^-1 at a centre of mass energy of sqrt{s} = 319 GeV. The results are in good agreement with Standard Model predictions, the dominant process being photon-photon interactions. Additional muons or electrons are searched for in events with two high transverse momentum muons using the full data sample corresponding to 114 pb^-1, where data at sqrt{s} = 301 GeV and sqrt{s} = 319 GeV are combined. Both the di-lepton sample and the tri-lepton sample agree well with the predictions.
We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
The production of charged kaon pairs in two-photon interactions has been studied with the ARGUS detector and the topological cross section has been measured. The γγ-widths and interference parameters have been determined for the tensor mesonsf2 (1270),a2 (1318) andf′2 (1525). The helicity structure assumed for the continuum contribution has a significant effect on the result. Upper limits have been obtained for the γγ-widths of the glueball candidate statesf2 (1720) andX (2230).
Detailed measurements of the production of charged π mesons in proton-proton collisions are reported. The observed results are compared with the "isobar" and "one-pion exchange" models and for single production are in agreement if only the "resonant" part of the π−p cross section is used and if the angular distribution cos16θ is introduced for the production of the N1* isobar. The effects of higher resonances are also considered.
Results from the HELIOS External Spectrometer on kaon production in 200 GeV/ A S + W and p + W collisions are presented. The K π ratios are compared with results from a lower beam energy and are found to be remarkably similar. Evidence for secondary production of K + by meson-baryon rescattering is reviewed. Our results at y = 1.0–1.5 are compared with neutral strange particle results at midrapidity.
This paper reports measurements of the hadrons produced in the inelastic scattering of 147-GeV muons by protons and deuterons in an experiment carried out at Fermi National Accelerator Laboratory. Both the scattered muon and the hadrons were measured in a large spectrometer. Properties of the hadron spectra are presented for proton, deuteron, and neutron targets and compared with theoretical models and with hadron spectra from related processes. Emphasis is placed on the quark-parton model and the data are found to be in substantial agreement with it. The average transverse momentum of the hadrons with respect to the virtual photon direction shows no dependence on the muon scattering variables. The data display "jet behavior" of the inclusive hadrons comparable to that found in e+e− annihilations.
The production of eta mesons has been measured in the proton-proton interaction close to the reaction threshold using the COSY-11 internal facility at the cooler synchrotron COSY. Total cross sections were determined for eight different excess energies in the range from 0.5 MeV to 5.4 MeV. The energy dependence of the total cross section is well described by the available phase-space volume weighted by FSI factors for the proton-proton and proton-eta pairs.
The production cross sections for Υ’s, ψ’s and χ c ’s in high energy pp̄ collisions have been measured using the CDF detector at Fermilab. Heavy quarkonia production involves a variety of mechanisms, and the data is used to disentangle various components. Large prompt ψ‐cross sections were observed, contrary to conventional expectations.