Particle-species dependent modification of jet-induced correlations in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 101 (2008) 082301, 2008.
Inspire Record 770833 DOI 10.17182/hepdata.142338

We report PHENIX measurements of the correlation of a trigger hadron at intermediate transverse momentum (2.5<p_{T,trig}<4 GeV/c), with associated mesons or baryons at lower p_{T,assoc}, in Au+Au collisions at sqrt(s_NN) = 200 GeV. The jet correlations for both baryons and mesons show similar shape alterations as a function of centrality, characteristic of strong modification of the away-side jet. The ratio of jet-associated baryons to mesons for this jet increases with centrality and p_{T,assoc} and, in the most central collisions, reaches a value similar to that for inclusive measurements. This trend is incompatible with in-vacuum fragmentation, but could be due to jet-like contributions from correlated soft partons which recombine upon hadronization.

0 data tables match query

Measurements of directed, elliptic, and triangular flow in Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 94 (2016) 054910, 2016.
Inspire Record 1394897 DOI 10.17182/hepdata.146752

Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ produced at midrapidity in Cu+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $\Psi_n$, for $n$~=~1, 2, and 3 are studied as a function of transverse momentum $p_T$ over a broad range of collisions centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared to hydrodynamical and transport model calculations. We also compare these Cu$+$Au results with those in Cu$+$Cu and Au$+$Au collisions at the same $\sqrt{s_{_{NN}}}$, and find that the $v_2$ and $v_3$, as a function of transverse momentum, follow a common scaling with $1/(\varepsilon_n N_{\rm part}^{1/3})$.

0 data tables match query

Nonperturbative transverse momentum broadening in dihadron angular correlations in $\sqrt{s_{NN}}=200$ GeV proton-nucleus collisions

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 99 (2019) 044912, 2019.
Inspire Record 1695272 DOI 10.17182/hepdata.141680

The PHENIX collaboration has measured high-$p_T$ dihadron correlations in $p$$+$$p$, $p$$+$Al, and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The correlations arise from inter- and intra-jet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of $p_{\rm out}$, the transverse momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial and final state transverse momenta. These distributions are measured multi-differentially as a function of $x_E$, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side $p_{\rm out}$ widths, sensitive to fragmentation transverse momentum, show no significant broadening between $p$$+$Au, $p$$+$Al, and $p$$+$$p$. The away-side nonperturbative $p_{\rm out}$ widths are found to be broadened in $p$$+$Au when compared to $p$$+$$p$; however, there is no significant broadening in $p$$+$Al compared to $p$$+$$p$ collisions. The data also suggest that the away-side $p_{\rm out}$ broadening is a function of $N_{\rm coll}$, the number of binary nucleon-nucleon collisions, in the interaction. The potential implications of these results with regard to initial and final state transverse momentum broadening and energy loss of partons in a nucleus, among other nuclear effects, are discussed.

0 data tables match query

Production of $b\bar{b}$ at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 092002, 2020.
Inspire Record 1798586 DOI 10.17182/hepdata.139988

The cross section of bottom quark-antiquark ($b\bar{b}$) production in $p$+$p$ collisions at $\sqrt{s}=510$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider. The results are based on the yield of high mass, like-sign muon pairs measured within the PHENIX muon arm acceptance ($1.2<|y|<2.2$). The $b\bar{b}$ signal is extracted from like-sign dimuons by utilizing the unique properties of neutral $B$ meson oscillation. We report a differential cross section of $d\sigma_{b\bar{b}\rightarrow \mu^\pm\mu^\pm}/dy = 0.16 \pm 0.01~(\mbox{stat}) \pm 0.02~(\mbox{syst}) \pm 0.02~(\mbox{global})$ nb for like-sign muons in the rapidity and $p_T$ ranges $1.2<|y|<2.2$ and $p_T>1$ GeV/$c$, and dimuon mass of 5--10 GeV/$c^2$. The extrapolated total cross section at this energy for $b\bar{b}$ production is $13.1 \pm 0.6~(\mbox{stat}) \pm 1.5~(\mbox{syst}) \pm 2.7~(\mbox{global})~\mu$b. The total cross section is compared to a perturbative quantum chromodynamics calculation and is consistent within uncertainties. The azimuthal opening angle between muon pairs from $b\bar{b}$ decays and their $p_T$ distributions are compared to distributions generated using {\sc ps pythia 6}, which includes next-to-leading order processes. The azimuthal correlations and pair $p_T$ distribution are not very well described by {\sc pythia} calculations, but are still consistent within uncertainties. Flavor creation and flavor excitation subprocesses are favored over gluon splitting.

0 data tables match query

Centrality dependence of charged particle multiplicity in Au Au collisions at s(N N)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 86 (2001) 3500-3505, 2001.
Inspire Record 539140 DOI 10.17182/hepdata.50270

We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.

0 data tables match query

Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 670 (2009) 313-320, 2009.
Inspire Record 778611 DOI 10.17182/hepdata.73669

The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.

0 data tables match query

Measurement of parity-violating spin asymmetries in W$^{\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 051103, 2016.
Inspire Record 1365091 DOI 10.17182/hepdata.73691

We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.

0 data tables match query

J / psi production versus transverse momentum and rapidity in p+p collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 232002, 2007.
Inspire Record 731611 DOI 10.17182/hepdata.57311

J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.

0 data tables match query

Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 152302, 2004.
Inspire Record 642225 DOI 10.17182/hepdata.140436

Bose-Einstein correlations of identically charged pion pairs were measured by the PHENIX experiment at mid-rapidity in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. The Bertsch-Pratt radius parameters were determined as a function of the transverse momentum of the pair and as a function of the centrality of the collision. Using the \it{full} Coulomb correction, the ratio $R_{\rm out}/R_{\rm side}$ is smaller than unity for $<k_{\rm T}>$ from 0.25 to 1.2 GeV/c and for all measured centralities. However, using recently developed partial Coulomb correction methods, we find that $R_{\rm out}/R_{\rm side}$ is 0.8-1.1 for the measured $<k_{\rm T}>$ range, and approximately constant at unity with the number of participants.

0 data tables match query

Transverse momentum dependence of J/psi polarization at midrapidity in p+p collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 82 (2010) 012001, 2010.
Inspire Record 839540 DOI 10.17182/hepdata.141077

We report the measurement of the transverse momentum dependence of inclusive J/psi polarization in p+p collisions at sqrt(s)=200 GeV performed by the PHENIX Experiment at RHIC. The polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for p_T < 5 GeV/c and |y| < 0.35. The J/psi polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models.

0 data tables match query

Nuclear matter effects on $J/\psi$ production in asymmetric Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.C 90 (2014) 064908, 2014.
Inspire Record 1288921 DOI 10.17182/hepdata.141714

We report on $J/\psi$ production from asymmetric Cu+Au heavy-ion collisions at $\sqrt{s_{_{NN}}}$=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of $J/\psi$ yields in Cu$+$Au collisions in the Au-going direction is found to be comparable to that in Au$+$Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, $J/\psi$ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-$x$ gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.

0 data tables match query

Transverse mass dependence of two-pion correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 192302, 2002.
Inspire Record 581871 DOI 10.17182/hepdata.141647

Two-pion correlations in sqrt(s_NN)=130 GeV Au+Au collisions at RHIC have been measured over a broad range of pair transverse momentum k_T by the PHENIX experiment at RHIC. The k_T dependent transverse radii are similar to results from heavy ion collisions at sqrt(s_NN) = 4.1, 4.9, and 17.3 GeV, whereas the longitudinal radius increases monotonically with beam energy. The ratio of the outwards to sidewards transverse radii (R_out/R_side) is consistent with unity and independent of k_T.

0 data tables match query

Polarization and cross section of midrapidity J/$\psi$ production in proton-proton collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 102 (2020) 072008, 2020.
Inspire Record 1798581 DOI 10.17182/hepdata.141538

The PHENIX experiment has measured the spin alignment for inclusive $J/\psi\rightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $\sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of $0.0<p_T<10.0$ GeV/$c$. The results are consistent with a previous one-dimensional analysis at midrapidity at $\sqrt{s}=200$ GeV. The transverse-momentum-dependent cross section for midrapidity $J/\psi$ production has additionally been measured, and after comparison to world data we find a simple logarithmic dependence of the cross section on $\sqrt{s}$.

0 data tables match query

Elliptic flow for $\phi$ mesons and (anti)deuterons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The PHENIX collaboration Afanasiev, S. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 99 (2007) 052301, 2007.
Inspire Record 746499 DOI 10.17182/hepdata.141340

Differential elliptic flow (v_2) for phi mesons and (anti)deuterons (d^bar)d is measured for Au+Au collisions at sqrt(s_NN) = 200 GeV. The v_2 for phi mesons follows the trend of lighter pi^+/- and K^+/- mesons, suggesting that ordinary hadrons interacting with standard hadronic cross sections are not the primary driver for elliptic flow development. The v_2 values for (d^bar)d suggest that elliptic flow is additive for composite particles. This further validation of the universal scaling of v_2 per constituent quark for baryons and mesons suggests that partonic collectivity dominates the transverse expansion dynamics.

0 data tables match query

Measurement of the Lambda and Antilambda particles in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 092302, 2002.
Inspire Record 585561 DOI 10.17182/hepdata.139716

We present results on the measurement of lambda and lambda^bar production in Au+Au collisions at sqrt(s_NN)=130 GeV with the PHENIX detector at RHIC. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The lambda^bar/lambda ratios are constant as a function of p_T and the number of participants. The measured net lambda density is significantly larger than predicted by models based on hadronic strings (e.g. HIJING) but in approximate agreement with models which include the gluon junction mechanism.

0 data tables match query

Measurements of $B \rightarrow J/\psi$ at forward rapidity in $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Aidala, C. ; Ajitanand, N.N. ; Akiba, Y. ; et al.
Phys.Rev.D 95 (2017) 092002, 2017.
Inspire Record 1507891 DOI 10.17182/hepdata.140435

We report the first measurement of the fraction of $J/\psi$ mesons coming from $B$-meson decay ($F_{B{\rightarrow}J/\psi}$) in $p$+$p$ collisions at $\sqrt{s}=$ 510 GeV. The measurement is performed using the forward silicon vertex detector and central vertex detector at PHENIX, which provide precise tracking and distance-of-closest-approach determinations, enabling the statistical separation of $J/\psi$ due to $B$-meson decays from prompt $J/\psi$. The measured value of $F_{B{\rightarrow}J/\psi}$ is 8.1\%$\pm$2.3\% (stat)$\pm$1.9\% (syst) for $J/\psi$ with transverse momenta $0<p_T<5$ GeV/$c$ and rapidity $1.2<|y|<2.2$. The measured fraction $F_{B{\rightarrow}J/\psi}$ at PHENIX is compared to values measured by other experiments at higher center of mass energies and to fixed-order-next-to-leading-logarithm and color-evaporation-model predictions. The $b\bar{b}$ cross section per unit rapidity ($d\sigma/dy(pp{\rightarrow}b\bar{b})$) extracted from the obtained $F_{B{\rightarrow}J/\psi}$ and the PHENIX inclusive $J/\psi$ cross section measured at 200 GeV scaled with color-evaporation-model calculations, at the mean $B$ hadron rapidity $y={\pm}1.7$ in 510 GeV $p$$+$$p$ collisions, is $3.63^{+1.92}_{-1.70}\mu$b, and it is consistent with the fixed-order-next-to-leading-logarithm calculations.

0 data tables match query

Production of $\pi^0$, $\eta$, and $K_S$ mesons in U$+$U collisions at $\sqrt{s_{_{NN}}}=192$ GeV

The PHENIX collaboration Acharya, U. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 102 (2020) 064905, 2020.
Inspire Record 1798526 DOI 10.17182/hepdata.132824

The PHENIX experiment at the Relativistic Heavy Ion Collider measured $\pi^0$ and $\eta$ mesons at midrapidity in U$+$U collisions at $\sqrt{s_{_{NN}}}=192$ GeV in a wide transverse momentum range. Measurements were performed in the $\pi^0(\eta)\rightarrow\gamma\gamma$ decay modes. A strong suppression of $\pi^0$ and $\eta$ meson production at high transverse momentum was observed in central U$+$U collisions relative to binary scaled $p$$+$$p$ results. Yields of $\pi^0$ and $\eta$ mesons measured in U$+$U collisions show similar suppression pattern to the ones measured in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for similar numbers of participant nucleons. The $\eta$/$\pi^0$ ratios do not show dependence on centrality or transverse momentum, and are consistent with previously measured values in hadron-hadron, hadron-nucleus, nucleus-nucleus, and $e^+e^-$ collisions.

0 data tables match query

Centrality dependence of low-momentum direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 064904, 2015.
Inspire Record 1296308 DOI 10.17182/hepdata.142985

The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon conversions to $e^+e^-$ pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low $p_T$. We find an excess of direct photons above the $N_{\rm coll}$-scaled yield measured in $p$$+$$p$ collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/$c$ in the $p_T$ range from 0.6--2.0 GeV/$c$. While the shape of the $p_T$ distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with $N_{\rm part}^\alpha$, where $\alpha=1.48{\pm}0.08({\rm stat}){\pm}0.04({\rm syst})$.

0 data tables match query

Correlated production of p and anti-p in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Lett.B 649 (2007) 359-369, 2007.
Inspire Record 731666 DOI 10.17182/hepdata.143520

Correlations between p and pbar's at transverse momenta typical of enhanced baryon production in Au+Au collisions are reported. The PHENIX experiment measures same and opposite sign baryon pairs in Au+Au collisions at sqrt(s_NN) = 200 GeV. Correlated production of p and p^bar with the trigger particle from the range 2.5 < p_T < 4.0 GeV/c and the associated particle with 1.8 < p_T < 2.5 GeV/c is observed to be nearly independent of the centrality of the collisions. Same sign pairs show no correlation at any centrality. The conditional yield of mesons triggered by baryons (and anti-baryons) and mesons in the same pT range rises with increasing centrality, except for the most central collisions, where baryons show a significantly smaller number of associated mesons. These data are consistent with a picture in which hard scattered partons produce correlated p and p^bar in the p_T region of the baryon excess.

0 data tables match query

Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

0 data tables match query

Systematic study of charged-pion and kaon femtoscopy in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034914, 2015.
Inspire Record 1362210 DOI 10.17182/hepdata.143260

We present a systematic study of charged pion and kaon interferometry in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

0 data tables match query

Scaling properties of proton and anti-proton production in s(NN)**(1/2) = 200-GeV Au + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 172301, 2003.
Inspire Record 619987 DOI 10.17182/hepdata.143073

We report on the yield of protons and anti-protons, as a function of centrality and transverse momentum, in Au+Au collisions at sqrt(s_NN) = 200 GeV measured at mid-rapidity by the PHENIX experiment at RHIC. In central collisions at intermediate transverse momenta (1.5 < p_T < 4.5 GeV/c) a significant fraction of all produced particles are protons and anti-protons. They show a centrality-scaling behavior different from that of pions. The p-bar/pion and p/pion ratios are enhanced compared to peripheral Au+Au, p+p, and electron+positron collisions. This enhancement is limited to p_T < 5 GeV/c as deduced from the ratio of charged hadrons to pi^0 measured in the range 1.5 < p_T < 9 GeV/c.

0 data tables match query

System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 90 (2014) 034903, 2014.
Inspire Record 1262739 DOI 10.17182/hepdata.143308

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}$=200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu$+$Cu collisions an enhanced production of electrons is observed relative to $p$$+$$p$ collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/$c$ the nuclear modification factor is $R_{AA}$$\sim$1.4. As the system size increases to more central Cu$+$Cu collisions, the enhancement gradually disappears and turns into a suppression. For $p_T>3$ GeV/$c$, the suppression reaches $R_{AA}$$\sim$0.8 in the most central collisions. The $p_T$ and centrality dependence of $R_{AA}$ in Cu$+$Cu collisions agree quantitatively with $R_{AA}$ in $d+$Au and Au$+$Au collisions, if compared at similar number of participating nucleons $\langle N_{\rm part} \rangle$.

0 data tables match query

Flow measurements via two-particle azimuthal correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 212301, 2002.
Inspire Record 585347 DOI 10.17182/hepdata.141931

Two particle azimuthal correlation functions are presented for charged hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The measurements permit determination of elliptic flow without event-by-event estimation of the reaction plane. The extracted elliptic flow values v_2 show significant sensitivity to both the collision centrality and the transverse momenta of emitted hadrons, suggesting rapid thermalization and relatively strong velocity fields. When scaled by the eccentricity of the collision zone, epsilon, the scaled elliptic flow shows little or no dependence on centrality for charged hadrons with relatively low p_T. A breakdown of this epsilon scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most central collisions.

0 data tables match query

Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 87 (2013) 034904, 2013.
Inspire Record 1102930 DOI 10.17182/hepdata.142077

We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) = 200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity (-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these kinematics and as a function of collision centrality (related to impact parameter for the R_dAu collision). We find that the modification is largest for collisions with small impact parameters, and observe a suppression (R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we observe a suppression for p_T<2 GeV/c then an enhancement (R_dAu>1) for p_T>2 GeV/c. The observed enhancement at negative rapidity has implications for the observed modification in heavy-ion collisions at high p_T.

0 data tables match query

Heavy-flavor electron-muon correlations in $p+p$ and $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 034915, 2014.
Inspire Record 1263517 DOI 10.17182/hepdata.142078

We report $e^\pm-\mu^\mp$ pair yield from charm decay measured between midrapidity electrons ($|\eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<\eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $\Delta\phi$ in both $p$$+$$p$ and in $d$+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Comparing the $p$$+$$p$ results with several different models, we find the results are consistent with a total charm cross section $\sigma_{c\bar{c}} =$ 538 $\pm$ 46 (stat) $\pm$ 197 (data syst) $\pm$ 174 (model syst) $\mu$b. These generators also indicate that the back-to-back peak at $\Delta\phi = \pi$ is dominantly from the leading order contributions (gluon fusion), while higher order processes (flavor excitation and gluon splitting) contribute to the yield at all $\Delta\phi$. We observe a suppression in the pair yield per collision in $d$+Au. We find the pair yield suppression factor for $2.7<\Delta\phi<3.2$ rad is $J_{dA}$ = 0.433 $\pm$ 0.087 (stat) $\pm$ 0.135 (syst), indicating cold nuclear matter modification of $c\bar{c}$ pairs.

0 data tables match query

Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 78 (2008) 044902, 2008.
Inspire Record 785509 DOI 10.17182/hepdata.143616

A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.

0 data tables match query

Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 77 (2008) 014905, 2008.
Inspire Record 758544 DOI 10.17182/hepdata.146750

We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with \nu for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.

0 data tables match query

Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 87 (2013) 012011, 2013.
Inspire Record 1185576 DOI 10.17182/hepdata.142146

We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.

0 data tables match query

$J/\psi$ and $\psi(2S)$ production at forward rapidity in $p$+$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.D 101 (2020) 052006, 2020.
Inspire Record 1773662 DOI 10.17182/hepdata.140524

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/\psi$ and cross-section ratio of $\psi(2S)$ to $J/\psi$ at forward rapidity in \pp collisions at \sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/\psi$ cross sections measured at \sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $\approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $d\sigma^{J/\psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~\mbox{GeV/$c$}) =$ 54.3 $\pm$ 0.5 (stat) $\pm$ 5.5 (syst) nb.

0 data tables match query

Transverse momentum dependent forward neutron single spin asymmetries in transversely polarized $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Acharya, U.A. ; Aidala, C. ; Akiba, Y. ; et al.
Phys.Rev.D 103 (2021) 032007, 2021.
Inspire Record 1834002 DOI 10.17182/hepdata.106656

In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.

0 data tables match query

Suppression of hadrons with large transverse momentum in central Au+Au collisions at s(NN)**(1/2) = 130-GeV

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 022301, 2002.
Inspire Record 562409 DOI 10.17182/hepdata.110700

Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c $< p_T <$ 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV. At high $p_T$ the spectra from peripheral nuclear collisions are consistent with the naive expectation of scaling the spectra from p+p collisions by the average number of binary nucleon- nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary- scaled p+p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear effect in central nuclear collisions at RHIC energies.

0 data tables match query

Version 2
Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 87 (2013) 034911, 2013.
Inspire Record 1127262 DOI 10.17182/hepdata.96561

The PHENIX experiment has measured the production of neutral pions in Au+Au collisions at sqrt(s_NN)=200 GeV. The new data offer a fourfold increase in recorded luminosity, providing higher precision and a larger reach in transverse momentum, p_T, to 20 GeV/c. The production ratio of eta/pi^0 is 0.46+/-0.01(stat)+/-0.05(syst), constant with p_T and collision centrality. The observed ratio is consistent with earlier measurements, as well as with the p+p and d+Au values. The production of pi^0 is suppressed by a factor of 5, as in earlier findings. However, with the improved statistical precision a small but significant rise of the nuclear modification factor, R_AA, vs p_T, with a slope of 0.0106+/-^(0.0034)_(0.0029)[GeV/c]^-1, is discernible in central collisions. A phenomenological extraction of the average fractional parton energy loss shows a decrease with increasing p_T. To study the path length dependence of suppression, the pi^0 yield was measured at different angles with respect to the event plane; a strong azimuthal dependence of the pi^0 R_AA is observed. The data are compared to theoretical models of parton energy loss as a function of the path length, L, in the medium. Models based on pQCD are insufficient to describe the data, while a hybrid model utilizing pQCD for the hard interactions and AdS/CFT for the soft interactions is consistent with the data.

0 data tables match query

High p_T Direct Photon and pi^0 Triggered Azimuthal Jet Correlations in sqrt(s)=200 GeV p+p Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 82 (2010) 072001, 2010.
Inspire Record 857187 DOI 10.17182/hepdata.95866

Correlations of charged hadrons of 1 < pT < 10 GeV/c with high pT direct photons and pi^ 0 mesons in the range 5 <pT < 15 GeV/c are used to study jet fragmentation in the photon+jet and di-jet channels, respectively. The magnitude of the partonic transverse momentum, kT, is obtained by comparing to a model incorporating a Gaussian kT smearing. The sensitivity of the associated charged hadron spectra to the underlying fragmentation function is tested and the data are compared to calculations using recent global fit results. The shape of the direct photon-associated hadron spectrum as well as its charge asymmetry are found to be consistent with a sample dominated by quark-gluon Compton scattering. No significant evidence of fragmentation photon correlated production is observed within experimental uncertainties.

0 data tables match query

Spectra and ratios of identified particles in Au+Au and d+Au collisions at sqrt(s_{NN})=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 88 (2013) 024906, 2013.
Inspire Record 1227971 DOI 10.17182/hepdata.96572

The transverse momentum (p_T) spectra and ratios of identified charged hadrons (\pi^+/-, K^+/-, p, p^bar) produced in sqrt(s_NN)=200 GeV Au+Au and d+Au collisions are reported in five different centrality classes for each collision species. The measurements of pions and protons are reported up to p_T=6 GeV/c (5 GeV/c), and the measurements of kaons are reported up to p_T=4 GeV/c (3.5 GeV/c) in Au+Au (d+Au) collisions. In the intermediate p_T region, between 2--5 GeV/c, a significant enhancement of baryon to meson ratios compared to those measured in p+p collisions is observed. This enhancement is present in both Au+Au and d+Au collisions, and increases as the collisions become more central. We compare a class of peripheral Au+Au collisions with a class of central d+Au collisions which have a comparable number of participating nucleons and binary nucleon-nucleon collisions. The p_T dependent particle ratios for these classes display a remarkable similarity, which is then discussed.

0 data tables match query

Cross section for $b\bar{b}$ production via dielectrons in d$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 91 (2015) 014907, 2015.
Inspire Record 1296859 DOI 10.17182/hepdata.141276

We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to {\sc pythia} and {\sc mc@nlo} simulations. The resulting $b\bar{b}$-production cross section is $\sigma^{d{\rm Au}}_{b\bar{b}}=1.37{\pm}0.28({\rm stat}){\pm}0.46({\rm syst})$~mb, which is equivalent to a nucleon-nucleon cross section of $\sigma^{NN}_{bb}=3.4\pm0.8({\rm stat}){\pm}1.1({\rm syst})\ \mu$b.

0 data tables match query

Nuclear modification of psi^prime, chi_c and J/psi production in d+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 111 (2013) 202301, 2013.
Inspire Record 1235307 DOI 10.17182/hepdata.141627

We present results for three charmonia states (psi^prime, chi_c and J/psi) in d+Au collisions at |y|<0.35 and sqrt(s_NN)=200 GeV. We find that the modification of the psi^prime yield relative to that of the J/psi scales approximately with charged-particle multiplicity at midrapidity across p+A, d+Au, and A+A results from the Super Proton Synchrotron and the Relativistic Heavy Ion Collider. In large impact-parameter collisions we observe a similar suppression for the psi^prime and J/psi, while in small impact-parameter collisions the more weakly bound psi^prime is more strongly suppressed. Owing to the short time spent traversing the Au nucleus, the larger psi^prime suppression in central events is not explained by an increase of the nuclear absorption due to meson formation time effects.

0 data tables match query

Double Helicity Dependence of Jet Properties from Dihadrons in Longitudinally Polarized p+p Collisions at sqrt(s) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 81 (2010) 012002, 2010.
Inspire Record 833129 DOI 10.17182/hepdata.141612

It has been postulated that partonic orbital angular momentum can lead to a significant double-helicity dependence in the net transverse momentum of Drell-Yan dileptons produced in longitudinally polarized p+p collisions. Analogous effects are also expected for dijet production. If confirmed by experiment, this hypothesis, which is based on semi-classical arguments, could lead to a new approach for studying the contributions of orbital angular momentum to the proton spin. We report the first measurement of the double-helicity dependence of the dijet transverse momentum in longitudinally polarized p+p collisions at sqrt(s) = 200 GeV from data taken by the PHENIX experiment in 2005 and 2006. The analysis deduces the transverse momentum of the dijet from the widths of the near- and far-side peaks in the azimuthal correlation of the dihadrons. When averaged over the transverse momentum of the triggered particle, the difference of the root-mean-square of the dijet transverse momentum between like- and unlike-helicity collisions is found to be -37 +/- 88(stat) +/- 14(syst) MeV/c.

0 data tables match query

Measurement of neutral mesons in p+p collisions at sqrt(s) = 200 GeV and scaling properties of hadron production

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 83 (2011) 052004, 2011.
Inspire Record 855102 DOI 10.17182/hepdata.143371

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K^0_S , \omega, \eta prime, and \phi mesons in p + p collisions at = 200 GeV. Measurements \omega and \phi production in different decay channels give consistent results. New results for the \phi are in agreement with previously published data and extend the measured pT coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-pT and characterizing the low-pT regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.

0 data tables match query

Onset of $\pi^0$ Suppression Studied in Cu$+$Cu Collisions at $\sqrt{s_{NN}}=$22.4, 62.4, and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 101 (2008) 162301, 2008.
Inspire Record 778403 DOI 10.17182/hepdata.143005

Neutral pion transverse momentum (pT) spectra at mid-rapidity (|y| < 0.35) were measured in Cu+Cu collisions at \sqrt s_NN = 22.4, 62.4, and 200 GeV. Relative to pi -zero yields in p+p collisions scaled by the number of inelastic nucleon-nucleon collisions (Ncoll) at the respective energies, the pi-zero yields for pT \ge 2 GeV/c in central Cu+Cu collisions at 62.4 and 200 GeV are suppressed, whereas an enhancement is observed at 22.4 GeV. A comparison with a jet quenching model suggests that final state parton energy loss dominates in central Cu+Cu collisions at 62.4 GeV and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.

0 data tables match query

Scaling properties of azimuthal anisotropy in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 162301, 2007.
Inspire Record 723948 DOI 10.17182/hepdata.143460

Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.

0 data tables match query

Suppressed pi0 production at large transverse momentum in central Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 072301, 2003.
Inspire Record 617814 DOI 10.17182/hepdata.143254

Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions is significantly below the yields measured at the same sqrt(s_NN) in peripheral Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains constant within errors. The deficit is already apparent in semi-peripheral reactions and increases smoothly with centrality.

0 data tables match query

Event Structure and Double Helicity Asymmetry in Jet Production from Polarized p+p Collisions at sqrt(s) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 84 (2011) 012006, 2011.
Inspire Record 870912 DOI 10.17182/hepdata.143462

We report on event structure and double helicity asymmetry ($A_LL$) of jet production in longitudinally polarized p+p collisions at $\sqrt{s}$=200 GeV. Photons and charged particles were measured at midrapidity $|\eta| < 0.35$ with the requirement of a high-momentum ($>2$ GeV/$c$) photon in each event. Measured event structure is compared with {\sc pythia} and {\sc geant} simulations. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet $A_{LL}$, photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster $p_T$ sum ($p_T^{\rm reco}$). The effect of detector response and the underlying events on $p_T^{\rm reco}$ was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the NLO pQCD jet production cross section. For $4 < p_T^{\rm reco} < 12$ GeV/$c$ with an average beam polarization of $< P > = 49%$ we measured $A_{LL} = -0.0014 \pm 0.0037^{\rm stat}$ at the lowest $p_T^{\rm reco}$ bin (4-5 GeV/$c$) and $-0.0181 \pm 0.0282^{\rm stat}$ at the highest $p_T^{\rm reco}$ bin (10-12 GeV/$c$) with a beam polarization scale error of 9.4% and a $\pT$ scale error of 10%. Jets in the measured $p_T^{\rm reco}$ range arise primarily from hard-scattered gluons with momentum fraction $0.02 < x < 0.3$ according to {\sc pythia}. The measured $A_{LL}$ is compared with predictions that assume various $\Delta G(x)$ distributions based on the GRSV parameterization. The present result imposes the limit $-1.1 < \int_{0.02}^{0.3}dx \Delta G(x, \mu^2 = 1 {\rm GeV}^2) < 0.4$ at 95% confidence level or $\int_{0.02}^{0.3}dx \Delta G(x, \mu^2 = 1 {\rm GeV}^2) < 0.5$ at 99% confidence level.

0 data tables match query

Suppression of back-to-back hadron pairs at forward rapidity in d+Au Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 107 (2011) 172301, 2011.
Inspire Record 901235 DOI 10.17182/hepdata.143197

Back-to-back hadron pair yields in d+Au and p+p collisions at sqrt(s_NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |eta|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<eta<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p_T, and eta points to cold nuclear matter effects arising at high parton densities.

0 data tables match query

Azimuthal angle correlations for rapidity separated hadron pairs in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 222301, 2006.
Inspire Record 712584 DOI 10.17182/hepdata.142147

We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.

0 data tables match query

Angular decay coefficients of $J/\psi$ mesons at forward rapidity from $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 95 (2017) 092003, 2017.
Inspire Record 1505176 DOI 10.17182/hepdata.141939

We report the first measurement of the full angular distribution for inclusive $J/\psi\rightarrow\mu^{+}\mu^{-}$ decays in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. The measurements are made for $J/\psi$ transverse momentum $2<p_{T}<10$ GeV/$c$ and rapidity $1.2<y<2.2$ in the Helicity, Collins-Soper, and Gottfried-Jackson reference frames. In all frames the polar coefficient $\lambda_{\theta}$ is strongly negative at low $p_{T}$ and becomes close to zero at high $p_{T}$, while the azimuthal coefficient $\lambda_{\phi}$ is close to zero at low $p_{T}$, and becomes slightly negative at higher $p_{T}$. The frame-independent coefficient $\tilde{\lambda}$ is strongly negative at all $p_{T}$ in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

0 data tables match query

Measurements of elliptic and triangular flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 115 (2015) 142301, 2015.
Inspire Record 1384274 DOI 10.17182/hepdata.141742

We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

0 data tables match query

$\phi$ meson production in the forward/backward rapidity region in Cu$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 024904, 2016.
Inspire Record 1394228 DOI 10.17182/hepdata.142075

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured $\phi$ meson production and its nuclear modification in asymmetric Cu$+$Au heavy-ion collisions at $\sqrt{s_{NN}}=200$ GeV at both forward Cu-going direction ($1.2<y<2.2$) and backward Au-going direction ($-2.2<y<-1.2$), rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0\%--20\% centrality, the $\phi$ meson yield integrated over $1<p_T<5$ GeV/$c$ prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu$+$Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in $d$$+$Au collisions for these rapidities.

0 data tables match query

Nuclear effects on hadron production in d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 74 (2006) 024904, 2006.
Inspire Record 711951 DOI 10.17182/hepdata.141892

PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.

0 data tables match query

Production of Phi mesons at mid-rapidity in s**(1/2)(NN) = 200-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 72 (2005) 014903, 2005.
Inspire Record 661505 DOI 10.17182/hepdata.141893

We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.

0 data tables match query