Observation of the $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ decay and studies of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-23-002, 2024.
Inspire Record 2762139 DOI 10.17182/hepdata.146756

The first observation of the decay $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ and measurement of the branching ratio of $\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$ to $\Xi^-_\mathrm{b}$$\to$ J/$\psi$$\Xi^-$ are presented. The J/$\psi$ and $\psi$(2S) mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, corresponding to an integrated luminosity of 140 fb$^{-1}$. The branching fraction ratio is measured to be $\mathcal{B}$($\Xi^-_\mathrm{b}$$\to$$\psi$(2S)$\Xi^-$)/$\mathcal{B}$($\Xi^-_\mathrm{b}$$\to$ J/$\psi$$\Xi^-$) = 0.84$^{+0.21}_{-0.19}$ (stat) $\pm$ 0.10 (syst) $\pm$ 0.02 ($\mathcal{B}$), where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the $\Xi_\mathrm{b}^{\ast{}0}$ baryon mass and natural width are also presented, using the $\Xi_\mathrm{b}^-\pi^+$ final state, where the $\Xi^-_\mathrm{b}$ baryon is reconstructed through the decays J/$\psi \Xi^-$, $\psi$(2S)$\Xi^-$, J/$\psi \Lambda$K$^-$, and J/$\psi \Sigma^0$K$^-$. Finally, the fraction of the $\Xi^-_\mathrm{b}$ baryons produced from $\Xi_\mathrm{b}^{\ast{}0}$ decays is determined.

0 data tables match query

Search for long-lived particles using displaced vertices and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-22-020, 2024.
Inspire Record 2761908 DOI 10.17182/hepdata.147272

A search for the production of long-lived particles in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC is presented. The search is based on data collected by the CMS experiment in 2016-2018, corresponding to a total integrated luminosity of 137 fb$^{-1}$. This search is designed to be sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 $\mu$m, whose decay products produce a final state with at least one displaced vertex and missing transverse momentum. A machine learning algorithm, which improves the background rejection power by more than an order of magnitude, is applied to improve the sensitivity. The observation is consistent with the standard model background prediction, and the results are used to constrain split supersymmetry (SUSY) and gauge-mediated SUSY breaking models with different gluino mean proper decay lengths and masses. This search is the first CMS search that shows sensitivity to hadronically decaying long-lived particles from signals with mass differences between the gluino and neutralino below 100 GeV. It sets the most stringent limits to date for split-SUSY models and gauge-mediated SUSY breaking models with gluino proper decay length less than 6 $\mu$m.

0 data tables match query

Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-23-014, 2024.
Inspire Record 2760892 DOI 10.17182/hepdata.146759

An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.

0 data tables match query

A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

0 data tables match query

Search for fractionally charged particles in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-19-006, 2024.
Inspire Record 2758805 DOI 10.17182/hepdata.146758

A search is presented for fractionally charged particles with charge below 1$e$, using their small energy loss in the tracking detector as a key variable to observe a signal. The analyzed data set corresponds to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions collected at $\sqrt{s}$ = 13 TeV in 2016-2018 at the CERN LHC. This is the first search at the LHC for new particles with charges between $e/$3 and $e$. Masses up to 640 GeV and charges as low as $e/$3 are excluded at 95% confidence level. These are the most stringent limits to date for the considered Drell-Yan-like production mode.

0 data tables match query

Differential cross section measurements for the production of top quark pairs and of additional jets using dilepton events from pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration
CMS-TOP-20-006, 2024.
Inspire Record 2758138 DOI 10.17182/hepdata.127702

Differential cross sections for top quark pair ($\mathrm{t\bar{t}}$) production are measured in proton-proton collisions at a center-of-mass energy of 13 TeV using a sample of events containing two oppositely charged leptons. The data were recorded with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The differential cross sections are measured as functions of kinematic observables of the $\mathrm{t\bar{t}}$ system, the top quark and antiquark and their decay products, as well as of the number of additional jets in the event. The results are presented as functions of up to three variables and are corrected to the parton and particle levels. When compared to standard model predictions based on quantum chromodynamics at different levels of accuracy, it is found that the calculations do not always describe the observed data. The deviations are found to be largest for the multi-differential cross sections.

0 data tables match query

Search for pair production of scalar and vector leptoquarks decaying to muons and bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-21-019, 2024.
Inspire Record 2758137 DOI 10.17182/hepdata.146074

A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date.

0 data tables match query

Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-21-008, 2024.
Inspire Record 2755637 DOI 10.17182/hepdata.146645

A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, $\tau$ leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2$\times$10$^{-3}$.

0 data tables match query

Search for pair production of higgsinos in events with two Higgs bosons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-278, 2024.
Inspire Record 2751932 DOI 10.17182/hepdata.136030

This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.

0 data tables match query

Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

0 data tables match query