Measurement of spin-orbital angular momentum interactions in relativistic heavy-ion collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 125 (2020) 012301, 2020.
Inspire Record 1762362 DOI 10.17182/hepdata.127978

The first evidence of spin alignment of vector mesons ($K^{*0}$ and $\phi$) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element $\rho_{00}$ is measured at midrapidity ($|y| <$ 0.5) in Pb-Pb collisions at a center-of-mass energy ($\sqrt{s_{\rm NN}}$) of 2.76 TeV with the ALICE detector. $\rho_{00}$ values are found to be less than 1/3 (1/3 implies no spin alignment) at low transverse momentum ($p_{\rm T} <$ 2 GeV/$c$) for $K^{*0}$ and $\phi$ at a level of 3$\sigma$ and 2$\sigma$, respectively. No significant spin alignment is observed for the $K^0_S$ meson (spin = 0) in Pb-Pb collisions and for the vector mesons in $pp$ collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination.

0 data tables match query

Measurement of the production cross-section of $J/\psi$ and $\psi(2$S$)$ mesons in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 169, 2024.
Inspire Record 2705040 DOI 10.17182/hepdata.145071

Measurements of the differential production cross-sections of prompt and non-prompt $J/\psi$ and $\psi(2$S$)$ mesons with transverse momenta between 8 and 360 GeV and rapidity in the range $|y|<2$ are reported. Furthermore, measurements of the non-prompt fractions of $J/\psi$ and $\psi(2$S$)$, and the prompt and non-prompt $\psi(2$S$)$-to-$J/\psi$ production ratios, are presented. The analysis is performed using 140 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data recorded by the ATLAS detector at the LHC during the years 2015-2018.

0 data tables match query

Version 3
Observation of $D^0$ meson nuclear modifications in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 142301, 2014.
Inspire Record 1292132 DOI 10.17182/hepdata.73474

In this erratum we report changes on the $D^0$ $p_T$ spectra and nuclear modification factor ($R_{AA}$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV by fixing the errors in the efficiency and selection criteria that affected the Au+Au results. The p+p reference spectrum has changed as well and is updated with new fragmentation parameters.

0 data tables match query

Version 3
Measurement of the dependence of the hadron production fraction ratio $f_\mathrm{s} / f_\mathrm{u}$ and $f_\mathrm{d} / f_ \mathrm{u}$ on B meson kinematic variables in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 121901, 2023.
Inspire Record 2610522 DOI 10.17182/hepdata.134069

The dependence of the ratio between the B$_\mathrm{s}^0$ and B$^+$ hadron production fractions, $f_\mathrm{s} / f_\mathrm{u}$, on the transverse momentum ($p_\mathrm{T}$) and rapidity of the B mesons is studied using the decay channels B$_\mathrm{s}^0$$\to$ J$/\psi\,\phi$ and B$^+$$\to$ J$/\psi$ K$^+$. The analysis uses a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 61.6 fb$^{-1}$. The $f_\mathrm{s} / f_\mathrm{u}$ ratio is observed to depend on the B $p_\mathrm{T}$ and to be consistent with becoming asymptotically constant at large $p_\mathrm{T}$. No rapidity dependence is observed. The ratio of the B$^0$ to B$^+$ hadron production fractions, $f_\mathrm{d} / f_\mathrm{u}$, measured using the B$^0$$\to$ J$/\psi$ K$^{*0}$ decay channel, is found to be consistent with unity and independent of $p_\mathrm{T}$ and rapidity, as expected from isospin invariance.

0 data tables match query

Azimuthal correlations in Z+jets events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 722, 2023.
Inspire Record 2172990 DOI 10.17182/hepdata.133278

The production of Z bosons associated with jets is measured in pp collisions at $\sqrt{s}$ = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV is measured for different regions of the Z boson's $p_\mathrm{T}$(Z), from lower than 10 GeV to higher than 100 GeV. The azimuthal correlation $\Delta \phi$ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $p_\mathrm{T}$(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $p_\mathrm{T}$(Z) regions.

0 data tables match query

Investigation into the event-activity dependence of $\Upsilon$(nS) relative production in proton-proton collisions at $\sqrt{s} = $ 7 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 001, 2020.
Inspire Record 1805867 DOI 10.17182/hepdata.95684

The ratios of the production cross sections between the excited $\Upsilon$(2S) and $\Upsilon$(3S) mesons and the $\Upsilon$(1S) ground state, detected via their decay into two muons, are studied as a function of the number of charged particles in the event. The data are from proton-proton collisions at $\sqrt{s} =$ 7 TeV, corresponding to an integrated luminosity of 4.8 fb$^{-1}$, collected with the CMS detector at the LHC. Evidence of a decrease in these ratios as a function of the particle multiplicity is observed, more pronounced at low transverse momentum $p_\mathrm{T}^{\mu\mu}$. For $\Upsilon$(nS) mesons with $p_\mathrm{T}^{\mu\mu}$ $\gt$ 7 GeV, where most of the data were collected, the correlation with multiplicity is studied as a function of the underlying event transverse sphericity and the number of particles in a cone around the $\Upsilon$(nS) direction. The ratios are found to be multiplicity independent for jet-like events. The mean $p_\mathrm{T}^{\mu\mu}$ values for the $\Upsilon$(nS) states as a function of particle multiplicity are also measured and found to grow more steeply as their mass increases.

0 data tables match query

Probing Strangeness Canonical Ensemble with $K^{-}$, $\phi(1020)$ and $\Xi^{-}$ Production in Au+Au Collisions at ${\sqrt{s_{NN}} = {3\,GeV}}$

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 831 (2022) 137152, 2022.
Inspire Record 1897327 DOI 10.17182/hepdata.110657

We report the first multi-differential measurements of strange hadrons of $K^{-}$, $\phi$ and $\Xi^{-}$ yields as well as the ratios of $\phi/K^-$ and $\phi/\Xi^-$ in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{3\,GeV}}$ with the STAR experiment fixed target configuration at RHIC. The $\phi$ mesons and $\Xi^{-}$ hyperons are measured through hadronic decay channels, $\phi\rightarrow K^+K^-$ and $\Xi^-\rightarrow \Lambda\pi^-$. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The $4\pi$ yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the $\phi/K^-$ and $\phi/\Xi^-$ ratios while the result of canonical ensemble (CE) calculations reproduce $\phi/K^-$, with the correlation length $r_c \sim 2.7$ fm, and $\phi/\Xi^-$, $r_c \sim 4.2$ fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at $\rm{3\,GeV}$ implies a rather different medium property at high baryon density.

0 data tables match query

Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell-Yan production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 628, 2023.
Inspire Record 2079374 DOI 10.17182/hepdata.115656

The double differential cross sections of the Drell-Yan lepton pair ($\ell^+\ell^-$, dielectron or dimuon) production are measured as functions of the invariant mass $m_{\ell\ell}$, transverse momentum $p_\mathrm{T}(\ell\ell)$, and $\phi^*_\eta$. The $\phi^*_\eta$ observable, derived from angular measurements of the leptons and highly correlated with $p_\mathrm{T}(\ell\ell)$, is used to probe the low-$p_\mathrm{T}(\ell\ell)$ region in a complementary way. Dilepton masses up to 1 TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various $m_{\ell\ell}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3 fb$^{-1}$ of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.

0 data tables match query

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

0 data tables match query

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

0 data tables match query