The inclusive single-particle spectra of pi-, K0(s) and Lambda in proton proton collisions at 19-GeV/c

The Scandinavian Bubble Chamber collaboration Boeggild, H. ; Dahl-Jensen, E. ; Hansen, K.H. ; et al.
Nucl.Phys.B 57 (1973) 77-99, 1973.
Inspire Record 84068 DOI 10.17182/hepdata.32535

Data on the inclusive production spectra of K S 0 and Λ from proton-proton collisions at 19 GeV are presented and discussed in connection with the earlier studied inclusive π − production spectrum. The three single-particle spectra are compared with a crude two-center thermal model for the average radiation from the pp collisions.

0 data tables match query

MEASUREMENT OF THE CHARGED PARTICLE MULTIPLICITY IN P P COLLISIONS AT 102-GEV/C.

Chapman, J.W. ; Green, N. ; Roe, B.P. ; et al.
Phys.Rev.Lett. 29 (1972) 1686-1688, 1972.
Inspire Record 73777 DOI 10.17182/hepdata.21427

We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.

0 data tables match query

Production of xi- and antixi+ particles in k+ p collisions at 12.7 gev/c

Stone, S.L. ; Berlinghieri, J.C. ; Bromberg, C. ; et al.
Phys.Lett.B 32 (1970) 515-518, 1970.
Inspire Record 63098 DOI 10.17182/hepdata.28710

The cross section for the production of Ξ + particles in K + p interactions at 12.7 GeV/ c is 10 ± 3 μ b; the Ξ − production cross section is 2.5 ± 1.0 μ b; the upper limit on Ω − or Ω + production is 0.4 μb. The Ξ − are produced preferentially in the backward direction in the CM system while the Ξ + are produced mainly forward. The mass and lifetime of the Ξ + agree with the accepted values for the Ξ − hyperon.

0 data tables match query

Pion production and elastic scattering in anti-proton-proton collisions at 6.94 bev/c

Ferbel, T. ; Johnson, J.A. ; Kraybill, H.L. ; et al.
Phys.Rev. 173 (1968) 1307-1314, 1968.
Inspire Record 55957 DOI 10.17182/hepdata.26499

We have studied nonstrange p¯−p interactions observed in 7000 pictures of the 80-in. Brookhaven National Laboratory hydrogen bubble chamber exposed to an antiproton beam with a momentum of 6.94 BeVc. The total cross section was measured to be 58.7±2.8 mb, and the elastic interaction cross section 14.2±1.2 mb. The elastic differential cross section for four-momentum transfers (−t)≤0.3 (BeVc)2 is well described by the exponential form dσeldt=(dσdt)t=0ebt, where b=13.1±1.1 (BeVc)−2. The single-pion production cross section is 4.0±0.9 mb. This channel proceeds 70% through resonance formation. N*(1238) isobar and anti-isobar formation dominates pion production in four- and six-pronged events; the double-isobar formation cross section in the final state pπ+p¯π− is 1.35±0.2 mb. Isobar production was observed to be consistent with the predictions of a dominant one-particle-exchange process. The pion-annihilation process, which has a cross section of 25±5 mb, shows substantial pion resonance formation.

0 data tables match query

Nucleon Isobar Production in Proton-Proton Collisions between 3 and 7 GeVc

Ankenbrandt, C.M. ; Clark, A.R. ; Cork, Bruce ; et al.
Phys.Rev. 170 (1968) 1223-1236, 1968.
Inspire Record 54418 DOI 10.17182/hepdata.26506

A systematic study has been made of the reactions pp→pp and pp→pN* in the angular range from θlab=10∘ to θc.m.=90∘ at 3, 4, 5, 6, and 7 GeVc. An orthogonal dispersion magnetic spectrometer detected protons from interactions in hydrogen with momentum transfer (−t) in excess of 0.5 (GeV)2. Well-defined peaks in the missing-mass spectra occurred at average N* masses of 1240±6, 1508±2, and 1683±3 MeV with average full widths of 102±4, 92±3, and 110±4 MeV, respectively. Below 2400 MeV no other significant enhancements were found. The N* production cross sections dσdt near θc.m.=90∘ are in qualitative agreement with the predictions of the statistical model. For each isobar the differential cross section at fixed energy varies as exp(−vv0), where v≡[−tu(t+u)]; v0 varies systematically with energy and tends toward the same value (≈0.4 GeV2) for each isobar at the upper limit of our energy range.

0 data tables match query

pi-Meson Production in 2.9-BeV p-p Collisions

Melissinos, A.C. ; Yamanouchi, T. ; Fazio, G.G. ; et al.
Phys.Rev. 128 (1962) 2373-2381, 1962.
Inspire Record 944979 DOI 10.17182/hepdata.26775

Detailed measurements of the production of charged π mesons in proton-proton collisions are reported. The observed results are compared with the "isobar" and "one-pion exchange" models and for single production are in agreement if only the "resonant" part of the π−p cross section is used and if the angular distribution cos16θ is introduced for the production of the N1* isobar. The effects of higher resonances are also considered.

0 data tables match query