Production of J / psi and psi (2S) mesons in pi- Be collisions at 515-GeV/c

The E672 & E706 collaborations Gribushin, A. ; Abramov, V. ; Antipov, Yu. ; et al.
Phys.Rev.D 53 (1996) 4723-4733, 1996.
Inspire Record 401108 DOI 10.17182/hepdata.42344

We have studied the production of J/ψ and ψ(2S) charmonium mesons in 515 GeV/c π−Be collisions in the Feynman-x range 0.1<xF<0.8. J/ψ mesons were detected via their decay into μ+μ−, and ψ(2S) mesons were studied in both the μ+μ− and J/ψπ+π− decay modes. J/ψ differential cross sections have been measured as functions of xF,pT2, and the cosine of the Gottfried-Jackson decay angle. We measure an inclusive J/ψ cross section of B(J/ψ→μ+μ−)σ(π−Be→J/ψ+X)/A= [9.3±0.1(stat)±1.1(syst)] nb/nucleon for J/ψ xF≳0.1. Our results are compared with those from other experiments performed at lower beam energies. We also measure the differential ψ(2S) cross section as a function of both xF and pT2, and a ψ(2S) inclusive cross section of B(ψ(2S)→J/ψπ+π−)σ(π−Be→ψ(2S)+X)/A=[7. 4±1.5(stat)±1.2(syst)] nb/nucleon for ψ(2S) xF≳0.1. The fraction of the inclusive J/ψ yield due to ψ(2S) meson decays is 0.083±0.017(stat) ±0.013(syst), and the observed ratio of ψ(2S) decay rates is B(ψ(2S)→J/ψπ+π−)/B(ψ(2S)→μ+μ−) =30.2±7.2(stat)±6.8(syst). We have searched for production of ‘‘hidden’’ charm resonances decaying into either J/ψπ±,ψ(2S)π±, or J/ψπ+π− systems, and report an upper limit of 3.1 nb/nucleon for the product of branching ratio and cross section for the recently reported enhancement at a J/ψπ+π− mass of 3.836 GeV/c2. © 1996 The American Physical Society.

0 data tables match query

Properties of $J / \psi$ Production in $\pi^-$ Be and p Be Collisions at 530 GeV/c

The E672/706 collaboration Abramov, V. ; Antipov, Yu. ; Baldin, B. ; et al.
FERMILAB-PUB-91-062-E, 1991.
Inspire Record 315071 DOI 10.17182/hepdata.42566

None

0 data tables match query

Leading neutron production in e+ p collisions at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Nucl.Phys.B 637 (2002) 3-56, 2002.
Inspire Record 587158 DOI 10.17182/hepdata.46613

The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.

0 data tables match query