Global polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons in Au+Au collisions at $\sqrt{s_{\rm NN}}=19.6$ and $27$ GeV

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 108 (2023) 014910, 2023.
Inspire Record 2659670 DOI 10.17182/hepdata.140936

In relativistic heavy-ion collisions, a global spin polarization, $P_\mathrm{H}$, of $\Lambda$ and $\bar{\Lambda}$ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing $P_\mathrm{H}$ with decreasing $\sqrt{s_{NN}}$. A splitting between $\Lambda$ and $\bar{\Lambda}$ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of $\sqrt{s_{NN}}=19.6$ and $27$ GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of $P_{\bar{\Lambda}}-P_{\Lambda}<0.24$% and $P_{\bar{\Lambda}}-P_{\Lambda}<0.35$%, respectively, at a 95% confidence level. We derive an upper limit on the na\"ive extraction of the late-stage magnetic field of $B<9.4\cdot10^{12}$ T and $B<1.4\cdot10^{13}$ T at $\sqrt{s_{NN}}=19.6$ and $27$ GeV, respectively, although more thorough derivations are needed. Differential measurements of $P_\mathrm{H}$ were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of $|y|<1$ and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.

0 data tables match query

Event-by-event correlations between $\Lambda$ ($\bar{\Lambda}$) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 27 \text{ GeV}$ from STAR

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 108 (2023) 014909, 2023.
Inspire Record 2652850 DOI 10.17182/hepdata.140262

Global polarizations ($P$) of $\Lambda$ ($\bar{\Lambda}$) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the $\Lambda$ and $\bar{\Lambda}$ global polarizations ($\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0$). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance ($\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0$) between left- and right-handed $\Lambda$ ($\bar{\Lambda}$) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator ($\Delta\gamma$) and parity-odd azimuthal harmonic observable ($\Delta a_{1}$). Measurements of $\Delta P$, $\Delta\gamma$, and $\Delta a_{1}$ have not led to definitive conclusions concerning the CME or the magnetic field, and $\Delta n$ has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between $\Delta n$ and $\Delta a_{1}$, which is sensitive to chirality fluctuations, and correlation between $\Delta P$ and $\Delta\gamma$ sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.

0 data tables match query

Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with charged leptons and jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 1164, 2023.
Inspire Record 2652625 DOI 10.17182/hepdata.141277

A search for heavy right-handed Majorana or Dirac neutrinos $N_{\mathrm{R}}$ and heavy right-handed gauge bosons $W_{\mathrm{R}}$ is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (``resolved'' channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (``boosted'' channel). The events are selected from $pp$ collision data at the LHC with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy right-handed $W_{\mathrm{R}}$ boson and $N_{\mathrm{R}}$ plane. The excluded region extends to about $m(W_{\mathrm{R}}) = 6.4$ TeV for both Majorana and Dirac $N_{\mathrm{R}}$ neutrinos at $m(N_{\mathrm{R}})<1$ TeV. $N_{\mathrm{R}}$ with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at $m(W_{\mathrm{R}})=4.8$ TeV for the Majorana neutrinos, and limits of $m(N_{\mathrm{R}})$ up to 3.6 TeV for $m(W_{\mathrm{R}}) = 5.2$ (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered.

0 data tables match query

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

0 data tables match query

Forward $J/\psi$ production in U$+$U collisions at $\sqrt{s_{NN}}$=193 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034903, 2016.
Inspire Record 1393789 DOI 10.17182/hepdata.144239

The invariant yields for $J/\psi$ production at forward rapidity $(1.2<|y|<2.2)$ in U$+$U collisions at $\sqrt{s_{_{NN}}}$=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor $R_{AA}$ are presented and compared with those from Au$+$Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U$+$U and Au$+$Au collisions within the same centrality class is presented, and used to investigate the role of $c\bar{c}$ coalescence. Two different parameterizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, $N_{\rm coll}$, and these were found to give significantly different $N_{\rm coll}$ values. Results using $N_{\rm coll}$ values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the $J/\psi$ suppression, relative to binary collision scaling, is similar in U$+$U and Au$+$Au for peripheral and midcentral collisions, but that $J/\psi$ show less suppression for the most central U$+$U collisions. The results are consistent with a picture in which, for central collisions, increase in the $J/\psi$ yield due to $c\bar{c}$ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between $c\bar{c}$ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine $N_{\rm coll}$.

0 data tables match query

System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 90 (2014) 034903, 2014.
Inspire Record 1262739 DOI 10.17182/hepdata.143308

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}$=200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu$+$Cu collisions an enhanced production of electrons is observed relative to $p$$+$$p$ collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/$c$ the nuclear modification factor is $R_{AA}$$\sim$1.4. As the system size increases to more central Cu$+$Cu collisions, the enhancement gradually disappears and turns into a suppression. For $p_T>3$ GeV/$c$, the suppression reaches $R_{AA}$$\sim$0.8 in the most central collisions. The $p_T$ and centrality dependence of $R_{AA}$ in Cu$+$Cu collisions agree quantitatively with $R_{AA}$ in $d+$Au and Au$+$Au collisions, if compared at similar number of participating nucleons $\langle N_{\rm part} \rangle$.

0 data tables match query

Measurements of $\mu\mu$ pairs from open heavy flavor and Drell-Yan in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.D 99 (2019) 072003, 2019.
Inspire Record 1672015 DOI 10.17182/hepdata.144516

PHENIX reports differential cross sections of $\mu\mu$ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV at forward and backward rapidity ($1.2<|\eta|<2.2$). The $\mu\mu$ pairs from $c\bar{c}$, $b\bar{b}$, and Drell-Yan are separated using a simultaneous fit to unlike- and like-sign muon pair spectra in mass and $p_T$. The azimuthal opening angle correlation between the muons from $c\bar{c}$ and $b\bar{b}$ decays and the pair-$p_T$ distributions are compared to distributions generated using {\sc pythia} and {\sc powheg} models, which both include next-to-leading order processes. The measured distributions for pairs from $c\bar{c}$ are consistent with {\sc pythia} calculations. The $c\bar{c}$ data presents narrower azimuthal correlations and softer $p_T$ distributions compared to distributions generated from {\sc powheg}. The $b\bar{b}$ data are well described by both models. The extrapolated total cross section for bottom production is $3.75{\pm}0.24({\rm stat}){\pm}^{0.35}_{0.50}({\rm syst}){\pm}0.45({\rm global})$[$\mu$b], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy, and is approximately a factor of two higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations.

0 data tables match query

Observation of direct-photon collective flow in sqrt(s_NN)=200 GeV Au+Au collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 109 (2012) 122302, 2012.
Inspire Record 900818 DOI 10.17182/hepdata.144510

The second Fourier component v_2 of the azimuthal anisotropy with respect to the reaction plane was measured for direct photons at midrapidity and transverse momentum (p_T) of 1--13 GeV/c in Au+Au collisions at sqr(s_NN)=200 GeV. Previous measurements of this quantity for hadrons with p_T < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p_T > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p_T > 4 GeV/c the anisotropy for direct photons is consistent with zero, as expected if the dominant source of direct photons is initial hard scattering. However, in the p_T < 4 GeV/c region dominated by thermal photons, we find a substantial direct photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region significantly underpredict the observed v_2.

0 data tables match query

Search for the $Z\gamma$ decay mode of new high-mass resonances in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138394, 2024.
Inspire Record 2695554 DOI 10.17182/hepdata.141854

This letter presents a search for narrow, high-mass resonances in the $Z\gamma$ final state with the $Z$ boson decaying into a pair of electrons or muons. The $\sqrt{s}=13$ TeV $pp$ collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb$^{-1}$. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into $Z\gamma$. For spin-0 resonances produced via gluon-gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon-gluon fusion (or quark-antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV.

0 data tables match query

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

0 data tables match query