Pion production with polarized photons and test of vector dominance model

Geweniger, Chr. ; Heide, P. ; Kötz, U. ; et al.
Phys.Lett.B 28 (1968) 155-156, 1968.
Inspire Record 1392676 DOI 10.17182/hepdata.29098

Cross section asymmetries for the sum of single π + and π - production with polarized photons of 3.4 GeV have been measured. The results disagree with calculations based on the vector dominance model using experimental data of vector meson production in π beams.

1 data table

No description provided.


Cross section measurements of charged pion photoproduction in hydrogen and deuterium from 1.1-GeV to 5.5-GeV.

The Jefferson Lab Hall A & Jefferson Lab E94-104 collaborations Zhu, L.Y. ; Arrington, J. ; Averett, T. ; et al.
Phys.Rev.C 71 (2005) 044603, 2005.
Inspire Record 659852 DOI 10.17182/hepdata.31680

The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.

14 data tables

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.

More…

Measurement of Polarized Target Asymmetry on $\gamma n \to \pi^- p$ Around the Second Resonance Region

Fujii, K. ; Hayashii, H. ; Iwata, S. ; et al.
Nucl.Phys.B 187 (1981) 53-70, 1981.
Inspire Record 156223 DOI 10.17182/hepdata.34260

The polarized target asymmetry for γ n→ π − p was measured over the second resonance region from 0.55 to 0.9 GeV at pion c.m. angles between 60° and 120°. A double-arm spectrometer was used with a deuterated butanol target to detect both the pion and the proton, thus considerably improving the data quality. Including the new data in the amplitude analysis, the radiative decay widths of three resonances were determined more accurately than before. The results are compared with various quark models.

8 data tables

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

PHOTON ENERGY IS IN THE NEUTRON REST FRAME.

More…

Photoproduction of charged pions on deuterium in the first resonance region

Von Holtey, G. ; Knop, G. ; Stein, H. ; et al.
Nucl.Phys.B 70 (1974) 379-389, 1974.
Inspire Record 94755 DOI 10.17182/hepdata.32319

Photoproduction of π + and π − on deuterium has been measured in the photon energy range from 240 to 400 MeV and for pion c.m. angles between 15° and 180°. The pions were analysed in angle and momentum by a magnetic spectrometer. From the measured π − / π + ratio, corrected for Coulomb interactions in the final state, differential cross sections of the reaction γ +n→ π − +p were calculated. Together with the π + photoproduction our data show no isotensor contribution. Comparison of our data with the recent experiments done on the inverse reaction shows no evidence of a violation of time reversal invariance. With the measured π + photoproduction on deuterium, a test of the spectator model has been made. Using the closure-approximation of Chew and Lewis our data agree within a range of ±10%.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the pi- p ---> n pi0 and pi- p ---> n gamma differential cross-sections near the resonance p(11)(1460)

Cheze, J.B. ; Codreanu, N. ; Hamel, J.L. ; et al.
Nucl.Phys.B 72 (1974) 365-375, 1974.
Inspire Record 94658 DOI 10.17182/hepdata.7810

The π − p→n γ and π − p→n π ° differential cross sections have been measured for −0.9< cos θ ∗ <−0.45 (θ ∗ c.m. scattering angle) at 475 MeV/ c and 550 MeV/ c incident momenta. The π − p→n γ measurement is a good check of the detailed balance principle in the electromagnetic interactions of hadrons at these energies and is in good agreement with Walker's analysis. On the other hand the π − p→ π °n extrapolated values of 180° allows one to verify that the phases of the A 1 2 and A 3 2 amplitudes are equal.

5 data tables

No description provided.

No description provided.

BACKWARD CROSS SECTION ESTIMATED BY LEGENDRE POLYNOMIAL FIT.

More…

Differential Cross-Sections for pi- p --> gamma n in the First Resonance Region

Guex, L.H. ; Joseph, C. ; Tran, M.T. ; et al.
Phys.Lett.B 55 (1975) 101-106, 1975.
Inspire Record 90715 DOI 10.17182/hepdata.27879

Differential cross-sections for negative pion radiative capture on protons at c.m. angles of 60°, 90°, and 120° have been measured at nine incident laboratory energies between 110 and 270 MeV. Comparison with measured cross-sections for pion photoproduction and with conventional multipole analyses shows neither evidence for a violation of time reversal invariance nor for an isotensor component of the electromagnetic current of hardrons.

7 data tables

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

More…

Measurement of Recoil Proton Polarization in the Process of $\pi^-$ Photoproduction From Neutrons in the Energy Range Between 700-{MeV} and 1200-{MeV}

Takeda, H. ; Arai, I. ; Fujii, T. ; et al.
Nucl.Phys.B 168 (1980) 17-31, 1980.
Inspire Record 131380 DOI 10.17182/hepdata.34512

The recoil proton polarization for γ n → π − p was measured around the third resonance region. Both momentum vectors of the proton and the pion were determined by the magnetic spectrometers. The proton polarization was measured by means of proton-carbon scattering in the polarization analyzer located behind the proton spectrometer. Below 900 MeV incident photon energy, our data are consistent with the other existing experimental data ( θ π ∗ = 90° ) and the predictions of partial-wave analyses. Above 1000 MeV, however, a large discrepancy was observed between our data and the predictions of the partial-wave analyses. The discrepancy stands out as the pion c.m. angle increases. A new partial-wave analysis was made for γ n → π − p including our polarization data, and the accuracy of the experimentally determined electromagnetic coupling constant of the third resonances were greatly improved. In particular, a finite amount of the helicity 3 2 amplitude for the γ n → F 15 (1688) resonance was obtained against the predictions of the quark models, by Copley, Karl and Obryk and by Feynman, Kislinger and Ravendal but in agreement with the relativistic quark models of Sugimoto and Toya, and Kubota and Ohta.

1 data table

No description provided.


Charged-pi photoproduction at 180 degress in the energy range between 300 and 1200 mev

Fujii, T. ; Okuno, H. ; Orito, S. ; et al.
Phys.Rev.Lett. 26 (1971) 1672-1675, 1971.
Inspire Record 68981 DOI 10.17182/hepdata.21616

The differential cross sections at 180° for the reactions γ+p→π++n and γ+n→π−+p were measured using a magnetic spectrometer to detect π± mesons. In order to reduce the spread of energy resolution due to the nucleon motion inside the deuteron, a photon difference method was employed with a 50-MeV step for the reaction γ+n→π−+p. The data show structures at the second- and the third-resonance regions for both reactions. A simple phenomenological analysis was made for fitting the data, and the results are compared with those of previous analyses.

2 data tables

No description provided.

No description provided.


Negative-pion photoproduction from neutrons by linearly polarized photons in the first resonance region

Kondo, K. ; Miyachi, T. ; Ukai, K. ; et al.
Phys.Rev.D 9 (1974) 529-533, 1974.
Inspire Record 93115 DOI 10.17182/hepdata.21954

The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of Pions on Polarized Protons and Neutrons in the Second Resonance Region

Althoff, K.H. ; Gies, M. ; Herr, H. ; et al.
Nucl.Phys.B 131 (1977) 1-6, 1977.
Inspire Record 119995 DOI 10.17182/hepdata.35224

Measurements of the target asymmetry T = ( σ ↑ − σ ↓)/( σ ↑ + σ ↓) for the reactions γ p → π + n and γ n → π − p at a fixed photon energy of 850 MeV and pion c.m. angles between 70° and 150° are reported. The data are compared to the previously measured angular distribution at 700 MeV.

2 data tables

No description provided.

No description provided.


Photoproduction of Negative Pions on Polarized Neutrons in the Region of the Second Resonance

Althoff, K.H. ; Conrad, R. ; Gies, M. ; et al.
Nucl.Phys.B 116 (1976) 253-260, 1976.
Inspire Record 109397 DOI 10.17182/hepdata.35639

A polarized neutron target was used at the Bonn 2.5 GeV Synchrotron to measure the target asymmetry for the reaction γ n↑→ π − p at a fixed photon energy of 700 MeV and pion c.m. angles between 50° and 140°. The pions were detected in a large aperture magnetic spectrometer. The data show a structure which is quite different from the distribution previously measured for the reaction γ p↑→ π + n.

1 data table

No description provided.


Pi- production with linearly polarized photons at 3.4 gev

Burfeindt, H. ; Buschhorn, G. ; Geweniger, C. ; et al.
Nucl.Phys.B 59 (1973) 87-92, 1973.
Inspire Record 83969 DOI 10.17182/hepdata.8010

The asymmetry of the reaction γ d π − p ( p S ) with linearly polarized photons has been measured at 3.4 GeV and momentum transfers √− t between 0.2 and 0.8 GeV/ c . As in π + production, the asymmetry is large and positive at small momentum transfers but drops rapidly with increasing √− t , crossing zero around √− t = 0.55 GeV/ c .

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

No description provided.


Measurement of Asymmetries in Polarized gamma + n --> pi + n, with E(gamma) from 600-MeV to 900-MeV

Knies, G. ; Oberlack, H. ; Rittenberg, A. ; et al.
Phys.Rev.D 10 (1974) 2778, 1974.
Inspire Record 90220 DOI 10.17182/hepdata.24943

We report on the measurement of asymmetries in the single-pion photoproduction reactions γp→nπ+, γp→pπ0, and γn→pπ−, induced by linearly polarized photons of energies from 610 to 940 MeV. The experiment was carried out using the back-scattered laser beam and the 82-in. dubble chamber at SLAC. We compare the new data with predictions from a partial-wave analysis.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of Negative Pions on a Polarized Neutron Target in the Resonance Region

Althoff, K.H. ; Beckschulze, H. ; Conrad, R. ; et al.
Nucl.Phys.B 96 (1975) 497-508, 1975.
Inspire Record 99642 DOI 10.17182/hepdata.31932

At the Bonn 2.5 GeV electron synchrotron the first measurements of the target asymmetry for the reaction γ + n ↑ → π − + p have been performed. The negative pions were detected in a magnetic spectrometer at a constant pion c.m. angle of 40° and photon energies between 0.45 GeV and 2.0 GeV. Deuterated butanol was used as target material. The polarization of the deuterons was about 16%. The results show a significant difference from the previously measured π + asymmetry.

1 data table

No description provided.


Photoproduction of negative pions on neutrons at photon energies between 0.2-GeV and 2.0-GeV

The Aachen-Berlin-Bonn-Hamburg-Heidelberg-Muenchen collaboration Hilpert, H.G. ; Lauscher, P. ; Matziolis, M. ; et al.
Nucl.Phys.B 8 (1968) 535-544, 1968.
Inspire Record 56298 DOI 10.17182/hepdata.32389

Total and differenial cross sections of the reaction γ +n→p+ π − have been determined for photon-energies between 0.2 and 2.0 GGeV. Below 500 MeV the differential cross sections are compared with theoretical predictions derived from fixed-momentum-transfer dispersion relations.

30 data tables

Axis error includes +- 0.0/0.0 contribution (5 TO 8////).

Axis error includes +- 0.0/0.0 contribution (5 TO 8////).

Axis error includes +- 0.0/0.0 contribution (5 TO 8////).

More…

Photoproduction of Charged pi Mesons from Hydrogen and Deuterium in the Energy Range Between 250-MeV and 790-MeV

Fujii, T. ; Kondo, T. ; Takasaki, F. ; et al.
Nucl.Phys.B 120 (1977) 395-422, 1977.
Inspire Record 108476 DOI 10.17182/hepdata.8405

The differential cross sections for γ p→ π + n from hydrogen and the π − π + ratios from deuterium were measured at nine c.m. angles between 30° and 150° for laboratory photon energies between 260 and 800 MeV. A magnetic spectrometer with three layers of scintillation hodoscope was used to detect charged π mesons. The cross section for γ n→ π − p was obtained as a product of d σ d Ω (γ p →π + n ) and the π − π + ratio. The overall features in the cross sections of the two reactions, γ p→ π + n and γ n→ π − p, and in the ratios, π − π + , agree with predictions by Moorhouse, Oberlack and Rosenfeld, and Metcalf and Walker. An investigation of the possible existence of an isotensor current was made and a negative result was found. In detailed balance comparison with the new results on the inverse reaction π − p→ γ n, no apparent violation of time-reversal invariance was observed.

112 data tables

No description provided.

No description provided.

No description provided.

More…

Polarization of the Proton from the gamma+n --> p+pi- Reaction

Kenemuth, J.R. ; Stein, P.C. ;
Phys.Rev. 129 (1963) 2259-2264, 1963.
Inspire Record 944978 DOI 10.17182/hepdata.26789

The polarization of the proton from the γ+n→p+π− reaction in deuterium has been experimentally measured at 90° in the center-of-mass system for photon energies near 715 MeV by using a counter technique to observe the left to right asymmetry in the scattering of the protons from carbon. A value of -0.26±0.06 was observed, with the direction of the polarization defined by n^=(k^×q^)|k^×q^|, where k^ and q^ are, respectively, unit vectors in the directions of the photon momentum and the pion momentum. The result is interpreted as an indication that the interference between the P32 (325 MeV) and D32 (750 MeV) resonances may not be the dominant contribution to the polarization at this energy. Significant contributions from either an interference between the P32 (325 MeV) resonance and the possible new resonance suggested by the π, p scattering measurements, or an interference between the D32 (750 MeV) and F52 (1050 MeV) resonances, or a combination of these two possibilities seem to be required.

2 data tables

No description provided.

No description provided.


Photoproduction of Charged Pions from Deuterium

Land, Robert H. ;
Phys.Rev. 113 (1959) 1141-1146, 1959.
Inspire Record 944993 DOI 10.17182/hepdata.26852

The photoproduction of charged pions from deuterium has been studied using a "monochromatic" gamma-ray beam of 292±8 Mev. The energy spectra of both positive and negative pions at the laboratory angle of 120° were determined and both agreed within experimental error with that predicted by the theory of Lax and Feshbach. The negative-to-positive ratio at 120° was 1.07±0.16, and within experimental error, was independent of meson energy. At an angle of 73° the ratio was 0.90±0.23 for 98.7 Mev mesons. The measured negative-to-positive ratio disagrees both with the simple classical picture of Brueckner and the phenomenological theory of Watson. Some results on the ratio using a bremsstrahlung beam are given.

1 data table

No description provided.


Photoproduction of pi- mesons on deuteron monochromatic photons in the first resonance region

Boucrot, J. ; Blum, D. ; Grossetete, B. ; et al.
Nuovo Cim.A 18 (1973) 635-653, 1973.
Inspire Record 87162 DOI 10.17182/hepdata.37783

Photoproduction of π−-mesons on deuteron has been studied in the first resonance region with an annihilation photon beam with adjustable peak energy (from 250 MeV to 400 MeV). A coincidence detection of both outgoing π−-meson and forward proton has been performed with a set of 9 multiwire proportional chambers (1700 wires) inside the gap of a spectrometer. The momentum of the second proton is computed from three-body kinematics; their distribution is found in excellent agreement with the spectator model, even at the top of the resonance. The differential cross-sections of π− have been measured from 100° to 180° (center of mass); they are in reasonable agreement with conventional multipole calculations and do not indicate an appreciable isotensor term.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Negative Pion Production from Neutrons by Polarized gamma Rays

Nishikawa, T. ; Hiramatsu, S. ; Kimura, Y. ; et al.
Phys.Rev.Lett. 21 (1968) 1288-1291, 1968.
Inspire Record 944914 DOI 10.17182/hepdata.38534

The differential asymmetry ratio for the process γ+n→p+π− was measured at 90° in the center-of-mass system and for incident photon energies from 352 to 550 MeV. The observed asymmetries are larger than the values predicted from the theory by Berends, Donnachie, and Weaver. A smaller M1- amplitude gives better agreement between the experiment and the theory.

2 data tables

No description provided.

No description provided.