Study of the anti-k pi pi system produced in k- p ---> anti-k pi pi n reactions at 14.3 gev/c

Barloutaud, R. ; Borg, A. ; Brun, F. ; et al.
Nucl.Phys.B 59 (1973) 374-411, 1973.
Inspire Record 83945 DOI 10.17182/hepdata.32536

We have studied the K ππ system in the 14.3 GeV/ c reactions K − p → K − π + π − p, K − p → K 0 π − π 0 and K − p → K 0 π + π − n . The data have been obtained from a 500 000 picture exposure of the CERN 2m HBC. The first two final states are dominated by Q-production in the Kππ system; there is also an L-signal at M (K ππ ) ∼ 1.75 GeV. The reaction cross sections are compared to K − p data at other energies. We discuss the K ππ mass dependence of the diffractive production slope. Evidence is presented for a Q − p versus Q + p differential cross section cross-over around | t | = 0.17 GeV 2 . A t -channel isospin analysis for the KN → K ∗(890)π N channels in the Q-region shows that the I = 1 exchange amplitude is ⋍ 10% of the dominant I = 0 exchange amplitude. The K ππ decay distributions indicate a predominant J P = 1 + state in the Q-region, and an important J P = 2 − contribution in the L-region. We find neither s -channel nor t -channel helicity conservation at the meson vertex in the Q- or L-regions. The K π angular correlation moments within the K ππ diffractive system are characteristic of K π elastic scattering, suggesting a π -exchange Deck-type production mechanism. There is evidence for a Kf 0 and κπ contribution (where κ is the J P (K π ) = 0 + state) to the diffractive K ππ system. A fit to the K − π + π − and K 0 π − π 0 Dalitz-plot distributions for the Q-re gion indicates that the ratio of K ϱ to K ∗ π decay amplitudes decreases with increasing K ππ mass.

1 data table

No description provided.


Evidence for Unnatural Spin - Parity States of (K pi pi)0 in the Charge Exchange Reaction K- p --> (anti-K0 pi+ pi-) n

The Aachen-Berlin-CERN-London-Vienna & Athens-Democritos-Liverpool-Vienna collaborations Otter, G. ; Rudolph, G. ; Schmitz, P. ; et al.
Nucl.Phys.B 84 (1975) 333-341, 1975.
Inspire Record 90804 DOI 10.17182/hepdata.32131

A partial-wave analysis of the (K ππ ) 0 system produced in the charge exchange reaction K − p →( K 0 π + π − ) n has been made in the mass range 1.04 ⩽ M (K ππ ) < 1.56 GeV c data at 8, 10 and 16 GeV/ c . It was found that in about 2 3 of the cases, the (K ππ ) 0 system is produced in states of unnatural spin-parity, namely J P = 0 − and 1 + ; the rest is in the natural spin-parity state J P = 2 + state is consistent with being all K ∗ (1420). The unnatural spin-parity states are produced mostly (∼ 80% of the events) by natural parity exchange. The facts that unnatural spin-parity states are produced in this non-diffractive channel, with J P = 1 + dominant, and that the exchange responsible for their production is mostly of natural parity, are similar to what was found for the charged (K ππ ) − system in the diffractive reaction K − p→(K ππ ) − p. However, the absolute value and the energy dependence of the cross sections are very different in the two cases.

2 data tables

CORRECTED FOR UNSEEN AK0 DECAY MODES.

ACTUALLY CROSS SECTIONS FOR PRODUCTION IN MASS REGION 1.04 < M(AK0 PI+ PI-) < 1.56 GEV IN THE STATES JP = 1+, 2+ AND 0- RESPECTIVELY.


The Low Mass K pi System in K- p --> anti-K pi n Reactions at 14.3-GeV/c

Spiro, M. ; Barloutaud, R. ; Borg, A. ; et al.
Nucl.Phys.B 125 (1977) 162-188, 1977.
Inspire Record 5199 DOI 10.17182/hepdata.35407

We present experimental results and a partial-wave analysis of the low-mass ( K π) 0 systems produced in the reactions K − p → K π N at 14.3 GeV/ c . The main results concern the production mechanisms of the K ∗ (890) and K ∗ (1420) . We also extract the s-wave component of the K π system as a function of mass.

5 data tables

THE ERRORS QUOTED (EXCEPT FOR THE FIRST REACTION) ARE MAINLY AN ESTIMATE OF THE SYSTEMATIC UNCERTAINTIES.

No description provided.

No description provided.

More…