Measurements of the Nucleon Structure Function in the Range 0.002-GeV**2 < x < 0.17-GeV**2 and 0.2-GeV**2 < q**2 < 8-GeV**2 in Deuterium, Carbon and Calcium

The European Muon collaboration Arneodo, M. ; Arvidson, A. ; Aubert, J.J. ; et al.
Nucl.Phys.B 333 (1990) 1-47, 1990.
Inspire Record 283347 DOI 10.17182/hepdata.33074

Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F 2 extracted from deuterium does not show a significant x dependence in the measured range of Q 2 and its Q 2 dependence is linear in log Q 2 . For calcium, a depletion of F 2 is observed at low x by 30% as compared with the values at x = 0.1 where F 2 (Ca) and F 2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q 2 . The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q 2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.

33 data tables

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

Deuterium data. Overall normalization error of 7 pct not included.

More…

Measurement of the spin dependent structure function g1(x) of the deuteron.

The Spin Muon collaboration Adeva, B. ; Ahmad, S. ; Arvidson, A. ; et al.
Phys.Lett.B 302 (1993) 533-539, 1993.
Inspire Record 354911 DOI 10.17182/hepdata.28926

We report on the first measurement of the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006< x <0.6, 1 GeV 2 < Q 2 <30 GeV 2 . The first moment, Γ 1 d =ʃ 0 1 g 1 d d x=0.023±0.020 ( stat. ) ± 0.015 ( syst. ) , is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g 1 p , we infer the first moment of the spin-dependent neutron structure function g 1 n . The difference Γ 1 p − Γ 1 n =0.20±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ 1 p − Γ 1 n =0.191±0.002.

2 data tables

Virtual photon asymmetry A1.

Spin-dependent structure function G1.


Accurate measurement of F2(d)/F2(p) and R(d)-R(p).

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 487 (1997) 3-26, 1997.
Inspire Record 426595 DOI 10.17182/hepdata.32750

Results are presented for F2d/F2p and Rd-Rp from simultaneous measurements of deep inelastic muon scattering on hydrogen and deuterium targets, at 90, 120, 200 and 280 GeV. The difference Rd-Rp, determined in the range 0.002<x<0.4 at an average Q^2 of 5 GeV^2, is compatible with zero. The x and Q^2 dependence of F2d/F2p was measured in the kinematic range 0.001<x<0.8 and 0.1<Q^2<145 GeV^2 with small statistical and systematic errors. For x>0.1 the ratio decreases with Q^2.

23 data tables

No description provided.

No description provided.

No description provided.

More…

The Structure Function ratios F2(li) / F2(D) and F2(C) / F2(D) at small x

The New Muon collaboration Arneodo, M. ; Arvidson, A. ; Badełek, B. ; et al.
Nucl.Phys.B 441 (1995) 12-30, 1995.
Inspire Record 394050 DOI 10.17182/hepdata.47955

We present the structure function ratios F2(Li)/F2(D) and F2(C)/F2(D) measured in deep inelastic muon-nucleus scattering at a nominal incident muon energy of 200 GeV. The kinematic range 0.0001 < x < 0.7 and 0.01< Q~2 < 70 GeV~2 is covered. For values of $x$ less than $0.002$ both ratios indicate saturation of shadowing at values compatible with photoabsorption results.

2 data tables

Additional normalization error of 0.004 not included.

Data on F2(C)/F2(DEUT) merged with previous NMC data from Amaudruz et al. 1995, NP B441,3. (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+3106> RED = 3106 </a>). Additional normalization error of 0.004 not included.


Spin structure of the proton from polarized inclusive deep-inelastic muon proton scattering.

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Rev.D 56 (1997) 5330-5358, 1997.
Inspire Record 440355 DOI 10.17182/hepdata.47485

We have measured the spin-dependent structure function $g_1~p$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1 GeV~2 < Q~2 < 60 GeV~2$. A next-to-leading order QCD analysis is used to evolve the measured $g_1~p(x,Q~2)$ to a fixed $Q~2_0$. The first moment of $g_1~p$ at $Q~2_0 = 10 GeV~2$ is $\Gamma~p = 0.136\pm 0.013(stat.) \pm 0.009(syst.)\pm 0.005(evol.)$. This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge $a_0$ is found to be $0.28 \pm 0.16$. In the Adler-Bardeen factorization scheme, $\Delta g \simeq 2$ is required to bring $\Delta \Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.

11 data tables

Data for Q**2 > 1 GeV**2.

Data for Q**2 > 0.2 GeV**2.

Statistical errors only.

More…

The spin-dependent structure function g1(x) of the deuteron from polarized deep-inelastic muon scattering.

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Akdogan, T. ; et al.
Phys.Lett.B 396 (1997) 338-348, 1997.
Inspire Record 440053 DOI 10.17182/hepdata.47513

We present a new measurement of the spin-dependent structure function g 1 d of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of g 1 d . A perturbative QCD evolution in next-to-leading order is used to compute g 1 d ( x ) at a constant Q 2 . At Q 2 = 10 GeV 2 , we obtain a first moment Γ 1 d =∫ 1 d g 1 d d x =0.041±0.008, a flavour-singlet axial charge of the nucleon a 0 = 0.30 ± 0.08, and an axial charge of the strange quark a s = −0.09 ± 0.03. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 m = 0.183 ± 0.035 at Q 2 = 10GeV 2 . This result is in agreement with the Bjorken sum rule which predicts Γ 1 p − Γ 1 n = 0.186 ± 0.002 at the same Q 2 .

6 data tables

Measurements of the transverse virtual photon asymmetry A2. Statistical errors only.

The virtual-photon deuteron cross section asymmetry A1 from the combined SMC data. Statistical errors only.

The spin dependent structure function G1(D).

More…

A New measurement of the spin dependent structure function g1(x) of the deuteron

The Spin Muon collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 357 (1995) 248-254, 1995.
Inspire Record 397392 DOI 10.17182/hepdata.47847

We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 < x < 0.7 and 1 GeV 2 < Q 2 < 60 GeV 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.

4 data tables

Results on the virtual photon deuteron asymmetry.

Results on the spin structure function of the deuteron.

Results on the spin structure function of the neutron.

More…

A Measurement of the ratio of the nucleon structure function in copper and deuterium

The European Muon collaboration Ashman, J. ; Badelek, B. ; Baum, G. ; et al.
Z.Phys.C 57 (1993) 211-218, 1993.
Inspire Record 341575 DOI 10.17182/hepdata.14499

Results are presented on the ratios of the nucleon structure function in copper to deuterium from two separate experiments. The data confirm that the nucleon structure function,F2, is different for bound nucleons than for the quasi-free ones in the deuteron. The redistribution in the fraction of the nucleon's momentum carried by quarks is investigated and it is found that the data are compatible with no integral loss of quark momenta due to nuclear effects.

3 data tables

Results from the 'chariot' experiment.

Results from the 'addendum' experiment.

Merged 'chariot' and 'addendum' ratio.. Errors are combined statistics and systematics.


Spin asymmetries A(1) and structure functions g1 of the proton and the deuteron from polarized high energy muon scattering.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112001, 1998.
Inspire Record 471981 DOI 10.17182/hepdata.49492

We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008<x<0.7 and 0.2<Q2<100GeV2. For the determination of A1, in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x<0.02, so it is combined with the usual method to provide the optimal set of results.

12 data tables

The virtual photon proton asymmetries.

The virtual photon deuteron asymmetries.

The virtual photon proton asymmetries in smaller X and Q**2 bins. bins. Errors are statistical only.

More…

A next-to-leading order QCD analysis of the spin structure function g1.

The Spin Muon collaboration Adeva, B. ; Akdogan, T. ; Arik, E. ; et al.
Phys.Rev.D 58 (1998) 112002, 1998.
Inspire Record 471982 DOI 10.17182/hepdata.49415

We present a next-to-leading order QCD analysis of the presently available data on the spin structure function g1 including the final data from the Spin Muon Collaboration. We present results for the first moments of the proton, deuteron, and neutron structure functions, and determine singlet and nonsinglet parton distributions in two factorization schemes. We also test the Bjorken sum rule and find agreement with the theoretical prediction at the level of 10%.

7 data tables

The second systematic (DSYS) error is due to QCD evolution.

First moments of the fitted function G1 evaluated on unmeasured X regions. Total uncertainties due to experimental systematics and theoretical sourc es in the QCD evolution.

First moment of fitted G1 evaluated on the whole X region.

More…