Search for the $Z\gamma$ decay mode of new high-mass resonances in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138394, 2024.
Inspire Record 2695554 DOI 10.17182/hepdata.141854

This letter presents a search for narrow, high-mass resonances in the $Z\gamma$ final state with the $Z$ boson decaying into a pair of electrons or muons. The $\sqrt{s}=13$ TeV $pp$ collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb$^{-1}$. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into $Z\gamma$. For spin-0 resonances produced via gluon-gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon-gluon fusion (or quark-antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV.

6 data tables

The main sources of systematic uncertainty for the $X\to Z \gamma$ search. The gluon-gluon fusion spin-0 signal samples produced at $m_{X} = [220-3400]$ GeV are used to evaluate the systematic uncertainty. The ranges for the uncertainties span the variations among different categories and different $m_{X}$ resonance masses. The uncertainty due to the spurious signal uncertainty is reported as the absolute number of events. In the table, "ID" for photon and electrons refers to identification efficiency uncertainties, "ISO" refers to isolation efficiency uncertainties, "TRIG" refers to trigger efficiency uncertainties, "RECO" refers to muon reconstruction efficiency uncertainty and "TTVA" refers to muon track-to-vertex-association efficiency uncertainty.

The observed (expected) upper limits of $\sigma(pp\to X)\cdot\mathcal{B}(X\to Z\gamma)$ for spin-0 and spin-2 heavy resonances at 95\% CL. $m_{X}$ varies from 220 GeV to 3400~\GeV.

Impacts of grouped dominant systematic uncertainties. The impact corresponds to the relative variation of the asymptotic expected upper limit of $\sigma(pp \rightarrow X) \times BR(X \rightarrow Z\gamma)$ from $m_{X}=220$ GeV to $m_{X}=3.4$ TeV when re-evaluating the quantity by fixing the corresponding nuisance parameters to the best-fit values, while keeping others free to float. The impact of total systematic uncertainties are performed in the last row.

More…

Version 2
K$^{0}_{\rm S}$- and (anti-)$\Lambda$-hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 945, 2021.
Inspire Record 1891391 DOI 10.17182/hepdata.114015

Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at $\sqrt{s} = 13$ TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K$^{0}_{\rm S}$) or baryon ($\Lambda$) with transverse momentum $p_{\rm T} > 3$ GeV/c is produced. Azimuthal correlations between kaons or $\Lambda$ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ($3 < p_{\rm T}^{\rm trigg} < 20$ GeV/$c$) and associated particle $p_{\rm T}$ (1 GeV/$c$$< p_{\rm T}^{\rm assoc} < p_{\rm T}^{\rm trigg}$), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K$^{0}_{\rm S}$ or $\Lambda$($\overline{\Lambda}$) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.

162 data tables

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

$\Delta\varphi$ projection of h-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

More…

Measurement of the inelastic proton-proton cross section at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2018) 161, 2018.
Inspire Record 1653948 DOI 10.17182/hepdata.83970

A measurement of the inelastic proton-proton cross section with the CMS detector at a center-of-mass energy of $\sqrt{s} =$ 13 TeV is presented. The analysis is based on events with energy deposits in the forward calorimeters, which cover pseudorapidities of -6.6 $&lt; \eta $ 4.1 GeV and/or $M_\mathrm{Y} &gt;$ 13 GeV, where $M_\mathrm{X}$ and $M_\mathrm{Y}$ are the masses of the diffractive dissociation systems at negative and positive pseudorapidities, respectively. The results are compared with those from other experiments as well as to predictions from high-energy hadron-hadron interaction models.

1 data table

The measured fiducial cross sections. The first bin represents the $\xi > 10^{-6}$ region, while the second bin represents the extended $\xi_{X} > 10^{-7}$ or $\xi_{Y} > 10^{-6}$ result. The first uncertainty is the systematic uncertainty excluding luminosity, the second is the luminosity uncertainty.


Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 117 (2016) 182002, 2016.
Inspire Record 1468167 DOI 10.17182/hepdata.74822

This Letter presents a measurement of the inelastic proton-proton cross section using 60 $\mu$b$^{-1}$ of $pp$ collisions at a center-of-mass energy $\sqrt{s}$ of $13$ TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ($2.07<|\eta|<3.86$) of the detector. A cross section of $68.1\pm 1.4$ mb is measured in the fiducial region $\xi=M_X^2/s>10^{-6}$, where $M_X$ is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this $\xi$ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with $M_X>13$ GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross-section of $78.1 \pm 2.9$ mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

1 data table

The measured and extrapolated inelastic cross section. The statistical uncertainty is negligible and is therefore displayed as zero. The first systematic uncertainty is the experimental systematic uncertainty apart from the luminosity, the second is the luminosity uncertainty, and the third is the extrapolation uncertainty.


Measurement of the inelastic proton-proton cross section at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 722 (2013) 5-27, 2013.
Inspire Record 1193338 DOI 10.17182/hepdata.68126

A measurement is presented of the inelastic proton-proton cross section at a centre-of-mass energy of sqrt(s) = 7 TeV. Using the CMS detector at the LHC, the inelastic cross section is measured through two independent methods based on information from (i) forward calorimetry (for pseudorapidity 3 < abs(eta) < 5), in collisions where at least one proton loses more than 5E-6 of its longitudinal momentum, and (ii) the central tracker (abs(eta) < 2.4), in collisions containing an interaction vertex with more than 1, 2, or 3 tracks with transverse momenta pT > 200 MeV. The measurements cover a large fraction of the inelastic cross section for particle production over about 9 units of pseudorapidity and down to small transverse momenta. The results are compared with those of other experiments, and with models used to describe high-energy hadronic interactions.

1 data table

$\sigma_\text{inel}$ at $\sqrt{s}=7$ TeV $\xi>5x10^{-6}$.


Pion production by 24 GeV/c protons in hydrogen

Dodd, P. ; Jobes, M. ; Kinson, J. ; et al.
Vol.1 (1962) 433-447, 1962.
Inspire Record 1187847 DOI 10.17182/hepdata.1346

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Rapidity gap cross sections measured with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 72 (2012) 1926, 2012.
Inspire Record 1084540 DOI 10.17182/hepdata.58497

Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.

5 data tables

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 200 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 400 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 600 MeV in the gap.

More…

Measurement of the Inelastic Proton-Proton Cross-Section at sqrt{s}=7 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nature Commun. 2 (2011) 463, 2011.
Inspire Record 894867 DOI 10.17182/hepdata.58283

A first measurement of the inelastic cross-section is presented for proton-proton collisions at a center of mass energy sqrt{s}=7 TeV using the ATLAS detector at the Large Hadron Collider. In a dataset corresponding to an integrated luminosity of 20 mub-1, events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of $60.3 +/- 2.1 mb is measured for xi > 5x10^-6, where xi=M_X^2/s is calculated from the invariant mass, M_X, of hadrons selected using the largest rapidity gap in the event. For diffractive events this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.

1 data table

The measured and extrapolated inelastic cross section. The first error is the experimental error and the second (sys) error is the error in the extrapolation.


Measurement of the differences in the total cross section for antiparallel and parallel longitudinal spins and a measurement of parity nonconservation with incident polarized protons and antiprotons at 200-GeV/c.

The E581/704 collaboration Grosnick, D.P. ; Hill, D.A. ; Kasprzyk, T. ; et al.
Phys.Rev.D 55 (1997) 1159-1187, 1997.
Inspire Record 420534 DOI 10.17182/hepdata.22329

The highest-energy measurement of ΔσL(pp) and the first ever measurement of ΔσL(p¯p), the differences between proton-proton and antiproton-proton total cross sections for pure longitudinal spin states, are described. Data were taken using 200-GeV/c polarized beams incident on a polarized-proton target. The results are measured to be ΔσL(pp)=−42±48(stat)±53(syst) μb and ΔσL(p¯p)=−256±124(stat)±109(syst) μb. Many tests of systematic effects were investigated and are described, and a comparison to theoretical predictions is also given. Measurements of parity nonconservation at 200 GeV/c in proton scattering and the first ever of antiproton scattering have also been derived from these data. The values are consistent with zero at the 10−5 level.

2 data tables

No description provided.

No description provided.


Observation of a New Structure in the Difference Between the $p p$ Total Cross-sections for Antiparallel and Parallel Longitudinal Spin States

Auer, I.P. ; Colton, E. ; Halpern, H. ; et al.
Phys.Rev.D 34 (1986) 2581, 1986.
Inspire Record 230143 DOI 10.17182/hepdata.23425

We have measured the difference between the pp total cross sections for parallel and antiparallel longitudinal spin states at beam momenta of 2.75, 2.92, 3.25, and 3.48 GeV/c. These results reveal possible new structure in this momentum range.

1 data table

Data read from graph. Statistical errors only.