K$^{*}$(892)$^{\pm}$ resonance production in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 044902, 2024.
Inspire Record 2692205 DOI 10.17182/hepdata.150017

The production of K$^*$(892)$^\pm$ meson resonance is measured at midrapidity ($|y|<0.5$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV using the ALICE detector at the LHC. The resonance is reconstructed via its hadronic decay channel K$^*$(892)$^\pm \rightarrow \rm{K^0_S \pi^\pm}$. The transverse momentum distributions are obtained for various centrality intervals in the $p_{\rm T}$ range of 0.4-16 GeV/$c$. The reported measurements of integrated yields, mean transverse momenta, and particle yield ratios are consistent with previous ALICE measurements for K$^*$(892)$^0$. The $p_{\rm T}$-integrated yield ratio 2K$^*$(892)$^\pm$/($\rm{K^+ + K^-}$) in central Pb-Pb collisions shows a significant suppression (9.3$\sigma$) relative to pp collisions. Thermal model calculations overpredict the particle yield ratio. Although both simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas MUSIC+SMASH tends to overpredict them. These observations, along with the kinetic freeze-out temperatures extracted from the yields of light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which increases towards central collisions. The $p_{\rm T}$-differential yield ratios 2K$^*$(892)$^\pm$/($\rm{K^+ + K^-}$) and 2K$^*$(892)$^\pm$/($\rm{\pi^+ + \pi^-}$) are suppressed by up to a factor of five at $p_{\rm T}<2$ GeV/$c$ in central Pb-Pb collisions compared to pp collisions at $\sqrt{s} =$ 5.02 TeV. Both particle ratios and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor shows a smooth evolution with centrality and is below unity at $p_{\rm T}>8$ GeV/$c$, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium.

17 data tables

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in Pb-Pb collisions at \sqrt{s_{NN}}$ = 5.02 TeV for 0-10\% centrality.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in Pb-Pb collisions at \sqrt{s_{NN}}$ = 5.02 TeV for 10-20\% centrality.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in Pb-Pb collisions at \sqrt{s_{NN}}$ = 5.02 TeV for 20-40\% centrality.

More…

System size dependence of hadronic rescattering effect at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-175, 2023.
Inspire Record 2691823 DOI 10.17182/hepdata.146076

The first measurements of $\mathrm{K^{*}(892)^{0}}$ resonance production as a function of charged-particle multiplicity in Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.44 TeV and pp collisions at $\sqrt{s}=$ 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity ($|y|< 0.5$) using the hadronic decay channel $\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}$. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of $\mathrm{K^{*0}}$, and yield ratios of resonance to stable hadron ($\mathrm{K^{*0}}$/K) are compared across different collision systems (pp, p$-$Pb, Xe$-$Xe, and Pb$-$Pb) at similar collision energies to investigate how the production of $\mathrm{K^{*0}}$ resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of $\mathrm{K^{*0}}$ in Xe$-$Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model.

27 data tables

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 0-1\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 1-5\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 5-10\% multiplicity class.

More…

Study of flavor dependence of the baryon-to-meson ratio in proton-proton collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.D 108 (2023) 112003, 2023.
Inspire Record 2686623 DOI 10.17182/hepdata.145640

The production cross sections of ${\rm D^0}$ and $\Lambda^+_{\rm c}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity ($|y|<0.5$) by the ALICE Collaboration in proton-proton collisions at a center-of-mass energy $\sqrt{s}=13$ TeV. They are described within uncertainties by perturbative QCD calculations employing the fragmentation fractions of beauty quarks to baryons measured at forward rapidity by the LHCb Collaboration. The ${\rm b\overline{b}}$ production cross section per unit of rapidity at midrapidity, estimated from these measurements, is ${\rm d}\sigma_{\rm b\overline{b}}/{\rm d}y|_{|y|<0.5} = 83.1 \pm 3.5 (\mathrm{stat.}) \pm 5.4(\mathrm{syst.}) ^{+12.3}_{-3.2} (\mathrm{extrap.})\,\mu$b. The baryon-to-meson ratios are computed to investigate the hadronization mechanism of beauty quarks. The non-prompt $\Lambda^+_{\rm c}/{\rm D^0}$ production ratio has a similar trend to the one measured for the promptly produced charmed particles and to the p$/\pi^+$ and $\Lambda/{\rm K^0_S}$ ratios, suggesting a similar baryon-formation mechanism among light, strange, charm, and beauty hadrons. The $p_{\rm T}$-integrated non-prompt $\Lambda_{\rm c}/{\rm D^0}$ ratio is found to be significantly higher than the one measured in e$^+$e$^-$ collisions.

3 data tables

$p_{\mathrm{T}}$-differential D$^{0}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

$p_{\mathrm{T}}$-differential $\Lambda_\mathrm{c}^{+}$ production cross section in pp collisions at $\sqrt{s}$ = 13 TeV

$p_{\mathrm{T}}$-differential non-prompt $\Lambda_\mathrm{c}^{+}$/non-prompt D$^{0}$ ratio in pp collisions at $\sqrt{s}$ = 13 TeV


Production of K$^{*}(892)^{0}$ and $\phi(1020)$ in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 106 (2022) 034907, 2022.
Inspire Record 1870141 DOI 10.17182/hepdata.140098

The production of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV has been measured using the ALICE detector at the Large Hadron Collider (LHC). The transverse momentum ($p_{\mathrm{T}}$) distributions of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons have been measured at midrapidity $(|y|<0.5)$ up to $p_{\mathrm{T}} = 20$ GeV$/c$ in inelastic pp collisions and for several Pb-Pb collision centralities. The collision centrality and collision energy dependence of the average transverse momenta agree with the radial flow scenario observed with stable hadrons, showing that the effect is stronger for more central collisions and higher collision energies. The $\mathrm{K^{*0}/K}$ ratio is found to be suppressed in Pb-Pb collisions relative to pp collisions: this indicates a loss of the measured K$^{*}(892)^{0}$ signal due to rescattering of its decay products in the hadronic phase. In contrast, for the longer-lived $\phi(1020)$ mesons, no such suppression is observed. The nuclear modification factors ($R_{\rm AA}$) of K$^{*}(892)^{0}$ and $\phi(1020)$ mesons are calculated using pp reference spectra at the same collision energy. In central Pb-Pb collisions for $p_{\rm T} > 8$ GeV$/c$, the $R_{\rm AA}$ values of K$^{*}(892)^{0}$ and $\phi(1020)$ are below unity and observed to be similar to those of pions, kaons, and (anti)protons. The $R_{\rm AA}$ values at high $p_{\mathrm T}$ ($>$~8 GeV$/c$) for K$^{*}(892)^{0}$ and $\phi(1020)$ mesons are in agreement within uncertainties for $\sqrt{s_\mathrm{NN}} = 5.02$ and 2.76 TeV.

22 data tables

$p_{T}$-dependent nuclear modification factor of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in 0-10% centrality class for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

$p_{T}$-dependent nuclear modification factor of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in 10-20% centrality class for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

$p_{T}$-dependent nuclear modification factor of $\rm{K}^{*0}$ (average of particle and anti-particle) meson measured in 20-30% centrality class for Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

More…

Production of ${\rm K}^{0}_{\rm{S}}$, $\Lambda$ ($\bar{\Lambda}$), $\Xi^{\pm}$ and $\Omega^{\pm}$ in jets and in the underlying event in pp and p$-$Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 136, 2023.
Inspire Record 2182725 DOI 10.17182/hepdata.139083

The production of strange hadrons (K$^{0}_{\rm S}$, $\Lambda$, $\Xi^{\pm}$, and $\Omega^{\pm}$), baryon-to-meson ratios ($\Lambda/{\rm K}^0_{\rm S}$, $\Xi/{\rm K}^0_{\rm S }$, and $\Omega/{\rm K}^0_{\rm S}$), and baryon-to-baryon ratios ($\Xi/\Lambda$, $\Omega/\Lambda$, and $\Omega/\Xi$) associated with jets and the underlying event were measured as a function of transverse momentum ($p_{\rm T}$) in pp collisions at $\sqrt{s} = 13$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The inclusive production of the same particle species and the corresponding ratios are also reported. The production of multi-strange hadrons, $\Xi^{\pm}$ and $\Omega^{\pm}$, and their associated particle ratios in jets and in the underlying event are measured for the first time. In both pp and p-Pb collisions, the baryon-to-meson and baryon-to-baryon yield ratios measured in jets differ from the inclusive particle production for low and intermediate hadron $p_{\rm T}$ (0.6$-$6 GeV/$c$). Ratios measured in the underlying event are in turn similar to those measured for inclusive particle production. In pp collisions, the particle production in jets is compared with PYTHIA 8 predictions with three colour-reconnection implementation modes. None of them fully reproduces the data in the measured hadron $p_{\rm T}$ region. The maximum deviation is observed for $\Xi^{\pm}$ and $\Omega^{\pm}$, which reaches a factor of about six. In p-Pb collisions, there is no significant event-multiplicity dependence for particle production in jets, in contrast to what is observed in the underlying event. The presented measurements provide novel constraints on hadronisation and its Monte Carlo description. In particular, they demonstrate that the fragmentation of jets alone is insufficient to describe the strange and multi-strange particle production in hadronic collisions at LHC energies.

44 data tables

$p_{\rm T}$-differential density of inclusive ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in pp collisions at $\sqrt{s} = 13$ TeV.

$p_{\rm T}$-differential densities of ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in jets and the underlying event in pp collisions at $\sqrt{s} = 13$ TeV.

$p_{\rm T}$-differential density of inclusive $\Xi^{\pm}$ in pp collisions at $\sqrt{s} = 13$ TeV.

More…

J/$\psi$ production at midrapidity in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 07 (2023) 137, 2023.
Inspire Record 2593303 DOI 10.17182/hepdata.138403

The production of inclusive, prompt and non-prompt J/$\psi$ was studied for the first time at midrapidity ($ -1.37 < y_{\rm cms} < 0.43$) in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV with the ALICE detector at the LHC. The inclusive J/$\psi$ mesons were reconstructed in the dielectron decay channel in the transverse momentum ($p_{\rm T}$) interval $0 < p_{\rm T} < 14$ GeV/$c$ and the prompt and non-prompt contributions were separated on a statistical basis for $p_{\rm T} > 2$ GeV/$c$. The study of the J/$\psi$ mesons in the dielectron channel used for the first time in ALICE online single-electron triggers from the Transition Radiation Detector, providing a data sample corresponding to an integrated luminosity of $689 \pm 13 \mu{\rm b}^{-1}$. The proton$-$proton reference cross section for inclusive J/$\psi$ was obtained based on interpolations of measured data at different centre-of-mass energies and a universal function describing the $p_{\rm T}$-differential J/$\psi$ production cross sections. The $p_{\rm T}$-differential nuclear modification factors $R_{\rm pPb}$ of inclusive, prompt, and non-prompt J/$\psi$ are consistent with unity and described by theoretical models implementing only nuclear shadowing.

8 data tables

d$^2\sigma$/d$y$d$p_{\rm T}$ in bins of $p_{\mathrm{T}}^{J/\psi}$ for inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV.

Nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.

$p_\mathrm{T}$ integrated nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.

More…

$\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2021-200, 2021.
Inspire Record 1946970 DOI 10.17182/hepdata.136309

The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonances has been measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval $-$0.5 $<$$y$$<$ 0 and the transverse momentum spectra are measured for various multiplicity classes up to $p_{\rm T}$ = 20 GeV/$c$ for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $p_{\rm T}$ = 16 GeV/$c$ for $\mathrm{\phi(1020)}$. The $p_{\rm T}$ -integrated yields and mean transverse momenta are reported and compared with previous results in pp, p-Pb and Pb-Pb collisions. The $x_{\mathrm{T}}$ scaling for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonance production is newly tested in p-Pb collisions and found to hold in the high-$p_{\rm T}$ region at LHC energies. The nuclear modification factors ($R_{\rm pPb}$) as a function of $p_{\rm T}$ for $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ at $\sqrt{s_{NN}}$ = 8.16 TeV are presented along with the new $R_{\rm pPb}$ measurements of $\mathrm{K}^{*0}$, $\mathrm{\phi}$ , $\Xi$, and $\Omega$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. At intermediate $p_{\rm T}$ (2-8 GeV/$c$), $R_{\rm pPb}$ of $\Xi$, $\Omega$ show a Cronin-like enhancement, while $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ show no or little nuclear modification. At high $p_{\rm T}$ ($>$ 8 GeV/$c$), the $R_{\rm pPb}$ values of all hadrons are consistent with unity within uncertainties. The $R_{\rm pPb}$ of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ at $\sqrt{s_{\rm NN}}$ = 8.16 and 5.02 TeV show no significant energy dependence.

22 data tables

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (NSD).

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 0-5%).

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 5-10%).

More…

$\Sigma(1385)^{\pm}$ resonance production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 351, 2023.
Inspire Record 2088201 DOI 10.17182/hepdata.134042

Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/$c$, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the $\Sigma(1385)^{\pm}$ particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/$c$. The first measurement of the $\Sigma(1385)^{\pm}$ resonance production at midrapidity in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}= 5.02$ TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, $\Lambda\pi$, as a function of the transverse momentum ($p_{\rm T}$) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For $\Sigma(1385)^{\pm}$, a similar behaviour as ${\rm K}^{*} (892)^{0}$ is observed in data unlike the predictions of EPOS3 with afterburner.

11 data tables

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (0-10% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (30-50% multiplicity class).

$p_{\rm{T}}$-differential yield of $\Sigma^{*+}$ + cc in Pb-Pb collisions with centre-of-mass energy/nucleon=5.02 TeV (50-90% multiplicity class).

More…

Inclusive, prompt and non-prompt ${\rm J}/\psi$ production at midrapidity in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2022) 011, 2022.
Inspire Record 1862791 DOI 10.17182/hepdata.130237

A measurement of inclusive, prompt, and non-prompt ${\rm J}/\psi$ production in p$-$Pb collisions at a nucleon$-$nucleon centre-of-mass energy $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is presented. The inclusive ${\rm J}/\psi$ mesons are reconstructed in the dielectron decay channel at midrapidity down to a transverse momentum $p_{\rm T} = 0$. The inclusive ${\rm J}/\psi$ nuclear modification factor $R_{\rm pPb}$ is calculated by comparing the new results in p$-$Pb collisions to a recently measured proton$-$proton reference at the same centre-of-mass energy. Non-prompt ${\rm J}/\psi$ mesons, which originate from the decay of beauty hadrons, are separated from promptly produced ${\rm J}/\psi$ on a statistical basis for $p_{\rm T}$ larger than 1.0 GeV/$c$. These results are based on the data sample collected by the ALICE detector during the 2016 LHC p$-$Pb run, corresponding to an integrated luminosity ${\cal L}_{\rm int} = 292 \pm 11 \; {\rm \mu b}^{-1}$, which is six times larger than the previous publications. The total uncertainty on the $p_{\rm T}$-integrated inclusive ${\rm J}/\psi$ and non-prompt ${\rm J}/\psi$ cross section are reduced by a factor 1.7 and 2.2, respectively. The measured cross sections and $R_{\rm pPb}$ are compared with theoretical models that include various combinations of cold nuclear matter effects. From the non-prompt ${\rm J}/\psi$ production cross section, the ${\rm b\overline{b}}$ production cross section at midrapidity, $\mathrm{d}\sigma_{\rm b\overline{b}}/\mathrm{d}y$, and the total cross section extrapolated over full phase space, $\sigma_{\rm b\overline{b}}$, are derived.

12 data tables

Fraction of non-prompt $\rm{J}/\psi$ in pp collisions at $\sqrt{s}$ = 5.02 TeV for different $p_\mathrm{T}$ ranges, as determined with a procedure of interpolation from measurments at other energies. It is not a direct measurment.

Inclusive d$^2\sigma$/d$y$d$p_{\rm T}$ in bins of $p_{\mathrm{T}}^{J/\psi}$ for prompt J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Fraction of non-prompt J/$\psi$ in p--Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for different $p_\mathrm{T}$ ranges.

More…

Measurement of $\Lambda$(1520) production in pp collisions at $\sqrt{s}$ = 7 TeV and p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adhya, S.P. ; et al.
Eur.Phys.J.C 80 (2020) 160, 2020.
Inspire Record 1752831 DOI 10.17182/hepdata.115139

The production of the $\Lambda$(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel $\Lambda$(1520) $\rightarrow$ pK$^{-}$ and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons ($\pi$, K, K$_{\rm{S}}^0$, p, $\Lambda$) describes the shape of the $\Lambda$(1520) transverse momentum distribution up to 3.5 GeV/$c$ in p-Pb collisions. In the framework of this model, this observation suggests that the $\Lambda(1520)$ resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of $\Lambda(1520)$ to the yield of the ground state particle $\Lambda$ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the $\Lambda$(1520) yield.

12 data tables

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) at midrapidity in inelastic pp collisions at $\sqrt{s}$ $\mathrm{=}$ 7 TeV.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in NSD p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

$p_{\rm T}$-differential yields of $\Lambda$(1520) (sum of particle and anti-particle states) in p--Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ $\mathrm{=}$ 5.02 TeV in multiplicity interval 0--20\%. The uncertainty 'sys,$p_{\rm T}$-correlated' indicates the systematic uncertainty after removing the contributions of $p_{\rm T}$-uncorrelated uncertainty.

More…

Production of $\Lambda$ and ${\rm K}^{0}_{\rm S}$ in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5$ TeV and pp collisions at $\sqrt{s} = 7$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136984, 2022.
Inspire Record 2048607 DOI 10.17182/hepdata.129068

The production of $\Lambda$ baryons and ${\rm K}^{0}_{\rm S}$ mesons (${\rm V}^{0}$ particles) was measured in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV and pp collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum ($p_{\rm T}$) in high multiplicity pp and p-Pb collisions. Hard scatterings are selected on an event-by-event basis with jets reconstructed with the anti-$k_{\rm T}$ algorithm using charged particles. The production of strange particles associated with jets $p_{\rm T,\;jet}^{\rm ch}>10$ and $p_{\rm T,\;jet}^{\rm ch}>20$ GeV/$c$ in p-Pb collisions, and with jet $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in pp collisions is reported as a function of $p_{\rm T}$. Its dependence on angular distance from the jet axis, $R({\rm V}^{0},\;{\rm jet})$, for jets with $p_{\rm T,\;jet}^{\rm ch}>10$ GeV/$c$ in p-Pb collisions is reported as well. The $p_{\rm T}$-differential production spectra of strange particles associated with jets are found to be harder compared to that in the underlying event and both differ from the inclusive measurements. In events containing a jet, the density of the ${\rm V}^{0}$ particles in the underlying event is found to be larger than the density in the minimum bias events. The $\Lambda/{\rm K}^{0}_{\rm S}$ ratio associated with jets in p-Pb collisions is consistent with the ratio in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio within jets is consistently lower than the one obtained in the underlying event and it does not show the characteristic enhancement of baryons at intermediate $p_{\rm T}$ often referred to as "baryon anomaly" in the inclusive measurements.

11 data tables

$p_{\rm T}$-differential density of inclusive ${\rm V}^{0}$ particles in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential density of ${\rm V}^{0}$ particles in underlying events (perp. cone) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV.

$p_{\rm T}$-differential densities of ${\rm V}^{0}$ particles selected with $R({\rm V}^{0},{\rm jet}) < 0.4$ and that produced in jets in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

More…

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Measurement of prompt D$^{0}$, $\Lambda_{c}^{+}$, and $\Sigma_{c}^{0,++}$(2455) production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 128 (2022) 012001, 2022.
Inspire Record 1868463 DOI 10.17182/hepdata.127976

The $p_{\rm T}$-differential production cross sections of prompt D$^{0}$, $\Lambda_{\rm c}^{+}$, and $\Sigma_{\rm c}^{0,++}(2455)$ charmed hadrons are measured at midrapidity ($|y| < 0.5$) in pp collisions at $\sqrt{s} = 13$ TeV. This is the first measurement of $\Sigma_{\rm c}^{0,++}$ production in hadronic collisions. Assuming the same production yield for the three $\Sigma_{\rm c}^{0,+,++}$ isospin states, the baryon-to-meson cross section ratios $\Sigma_{\rm c}^{0,+,++}/{\rm D}^{0}$ and $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ are calculated in the transverse momentum ($p_{\rm T}$) intervals $2 < p_{\rm T} < 12$ GeV/$c$ and $1 < p_{\rm T} < 24$ GeV/$c$. Values significantly larger than in e$^{+}$e$^{-}$ collisions are observed, indicating for the first time that baryon enhancement in hadronic collisions also extends to the $\Sigma_{\rm c}$. The feed-down contribution to $\Lambda_{\rm c}^{+}$ production from $\Sigma_{\rm c}^{0,+,++}$ is also reported and is found to be larger than in e$^{+}$e$^{-}$ collisions. The data are compared with predictions from event generators and other phenomenological models, providing a sensitive test of the different charm-hadronisation mechanisms implemented in the models.

7 data tables

$p_\mathrm{T}$-differential cross section of prompt $D^0$ in pp collisions at $\sqrt{s}$ = 13 TeV

$p_\mathrm{T}$-differential cross section of prompt $\Lambda_c^+$ in pp collisions at $\sqrt{s}$ = 13 TeV

$p_\mathrm{T}$-differential cross section of prompt $\Sigma_c^{0,++}$ in pp collisions at $\sqrt{s}$ = 13 TeV

More…

Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136943, 2022.
Inspire Record 1856529 DOI 10.17182/hepdata.128138

Neutral pion ($\pi^{0}$) and $\eta$ meson production cross sections were measured up to unprecedentedly high transverse momenta ($p_{\rm T}$) in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval $-1.3< y <0.3$ in the ranges of $0.4<p_{\rm T}<200$ GeV/$c$ and $1.0<p_{\rm T}<50$ GeV/$c$, respectively. The respective nuclear modification factor ($R_{\rm pPb}$) is presented for $p_{\rm T}$ up to of 200 and 30 GeV/$c$, where the former was achieved by extending the $\pi^{0}$ measurement in pp collisions at $\sqrt{s}$ = 8 TeV using the merged cluster technique. The values of $R_{\rm pPb}$ are below unity for $p_{\rm T}<10$ GeV/$c$, while they are consistent with unity for $p_{\rm T}>10$ GeV/$c$, leaving essentially no room for final state energy loss. The new data provide strong constraints for nuclear parton distribution and fragmentation functions over a broad kinematic range and are compared to model predictions as well as previous results at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

8 data tables

Invariant differential cross section of PI0 produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

Invariant differential cross section of PI0 produced in inelastic pp collisions at a centre-of-mass energy of 8 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of ETA produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

More…

$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

Production of pions, kaons, (anti-)protons and $\phi$ mesons in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 584, 2021.
Inspire Record 1840099 DOI 10.17182/hepdata.110161

The first measurement of the production of pions, kaons, (anti-)protons and $\phi$ mesons at midrapidity in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV is presented. Transverse momentum ($p_{\rm T}$) spectra and $p_{\rm T}$-integrated yields are extracted in several centrality intervals bridging from p-Pb to mid-central Pb-Pb collisions in terms of final-state multiplicity. The study of Xe-Xe and Pb-Pb collisions allows systems at similar charged-particle multiplicities but with different initial geometrical eccentricities to be investigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry, the previously observed smooth evolution of particle ratios with multiplicity from small to large collision systems is also found to hold in Xe-Xe. In addition, our results confirm that two remarkable features of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower proton-to-pion ratio with respect to the thermal model expectations and the increase of the $\phi$-to-pion ratio with increasing final-state multiplicity.

58 data tables

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.

$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.

$p_{T}$-distributions of protons ($p+pbar$) measured in Xe-Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV. Centrality class 0-5%.

More…

Coherent diffractive photoproduction of $\rho^{0}$ mesons on gold nuclei at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 96 (2017) 054904, 2017.
Inspire Record 1515028 DOI 10.17182/hepdata.101354

The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.

13 data tables

The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.

The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.

The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).

More…

Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Rev.C 101 (2020) 044907, 2020.
Inspire Record 1759506 DOI 10.17182/hepdata.104923

Mid-rapidity production of $\pi^{\pm}$, $\rm{K}^{\pm}$ and ($\bar{\rm{p}}$)p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum ($p_{\rm{T}}$) range from hundreds of MeV/$c$ up to 20 GeV/$c$. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0$-$90%. The comparison of the $p_{\rm{T}}$-integrated particle ratios, i.e. proton-to-pion (p/$\pi$) and kaon-to-pion (K/$\pi$) ratios, with similar measurements in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV show no significant energy dependence. Blast-wave fits of the $p_{\rm{T}}$ spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/$\pi$, K/$\pi$) as a function of $p_{\rm{T}}$ show pronounced maxima at $p_{\rm{T}}$ $\approx$ 3 GeV/$c$ in central Pb-Pb collisions. At high $p_{\rm{T}}$, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high $p_{\rm{T}}$ and compatible with measurements at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily.

17 data tables

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

$p_{T}$-distributions of pions ($\pi^{+}+\pi^{-}$) measured in pp collisions at $\sqrt{s}$ = 5.02 TeV.

$p_{T}$-distributions of kaons ($K^{+}+K^{-}$) measured in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

More…

Production of light-flavor hadrons in pp collisions at $\sqrt{s}$ = 7 and $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 256, 2021.
Inspire Record 1797443 DOI 10.17182/hepdata.100303

The production of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}^{*}(892)^{0}$, $\rm{p}$, $\phi(1020)$, $\Lambda$, $\Xi^{-}$, $\Omega^{-}$, and their antiparticles was measured in inelastic proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm{T}}$) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $p_{\rm{T}}$ distributions of $\rm{K}^{0}_{S}$, $\Lambda$, and $\overline{\Lambda}$ in inelastic pp collisions at $\sqrt{s}$ = 7 TeV are reported here for the first time. The $p_{\rm{T}}$ distributions are studied at midrapidity within the transverse momentum range $0\leq p_{\rm{T}}\leq20$ GeV/$c$, depending on the particle species. The $p_{\rm{T}}$ spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $\sqrt{s}$ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $p_{\rm{T}}$ with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $x_{\rm{T}}\equiv2p_{\rm{T}}/\sqrt{s}$ scaling properties of hadron production are also studied. As the collision energy increases from $\sqrt{s}$ = 7 to 13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $\sqrt{s}$, while ratios for multi-strange hadrons indicate enhancements. The $p_{\rm{T}}$-differential cross sections of $\pi^{\pm}$, $\rm{K}^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $\pi^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) at high $p_{\rm{T}}$.

47 data tables

Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

Transverse momentum spectrum of $K^{0}_{S}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

More…

Forward $\ensuremath{\Lambda}$ Production and Nuclear Stopping Power in $d$ + Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 76 (2007) 064904, 2007.
Inspire Record 752244 DOI 10.17182/hepdata.98961

We report the measurement of Lamda and Anti-Lamda yields and inverse slope parameters in d + Au collisions at sqrt(s_NN) = 200 GeV at forward and backward rapidities (y = +- 2.75), using data from the STAR forward time projection chambers. The contributions of different processes to baryon transport and particle production are probed exploiting the inherent asymmetry of the d + Au system. Comparisons to model calculations show that the baryon transport on the deuteron side is consistent with multiple collisions of the deuteron nucleons with gold participants. On the gold side HIJING based models do not describe the measured particle yields while models with initial state nuclear effects and/or hadronic rescattering do. The Multi-Chain Model can provide a good description of the net baryon density in d + Au collisions at RHIC, and the derived parameters of the model agree with those from nuclear collisions at lower energies.

18 data tables

(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.

(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.

(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.

More…

rho^0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 034910, 2008.
Inspire Record 771169 DOI 10.17182/hepdata.98962

Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of rho^0 and direct pi^+pi^- photoproduction in ultra-peripheral relativistic heavy ion collisions at sqrt(s_{NN})=200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of sigma(AuAu) -> Au^*Au^*rho^0 = 530 pm 19 (stat.) pm 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho^0 transverse momentum spectrum (p_{T}^2) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus/ we find sigma_{inc}/sigma_{coh} = 0.29 pm 0.03 (stat.) pm 0.08 (syst.). The ratio of direct pi^+pi^- to rho^0 production is comparable to that observed in gamma p collisions at HERA, and appears to be independent of photon energy. Finally, the measured rho^0 spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.

10 data tables

ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.

ZDC spectra obtained with the minimum bias sample after the $\rho^{0}$ selection cuts are applied, and fit with three Gaussians. The east ZDC is shown on the left and the west ZDC is shown on the right. The ratio of numbers of candidates in the West ZDC of 1n:2n:3n is 1: 0.48 $\pm$ 0.03: 0.42 $\pm$ 0.03, while in the East ZDC, we find 1n:2n:3n is 1: 0.46 $\pm$ 0.03: 0.42 $\pm$ 0.03.

The invariant mass distribution for the coherently produced $\rho^{0}$ candidates from the minimum bias sample with the cut on the $\rho^{0}$ transverse momentum $p_{T}$ < 150 MeV/c. The hatched area is the contribution from the combinatorial background. The solid line corresponds to Eq. 3 which encompasses the Breit-Wigner (dashed), the mass independent contribution from the direct $\pi^{+}\pi^{-}$ production (dash-dotted), and the interference term(dotted).

More…

Narrowing of the balance function with centrality in Au + Au collisions s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 90 (2003) 172301, 2003.
Inspire Record 612248 DOI 10.17182/hepdata.98620

The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.

6 data tables

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The balance function versus ∆η for charged particle pairs from a) central and peripheral Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV and mixed events from central and peripheral Au+Au collisions, and b) HIJING events filtered with GEANT [16] and shuffled pseudorapidity events from central and peripheral Au+Au collisions. To guide the eye, Gaussian fits excluding the lowest bin in ∆η are shown. The error bars shown are statistical. The balance function for HIJING events is independent of centrality.

The width of the balance function for charged particles, $⟨\Delta \eta⟩$, as a function of normalized impact parameter $(b/b_{max})$. Error bars shown are statistical. The width of the balance function from HIJING events is shown as a band whose height reflects the statistical uncertainty. Also shown are the widths from the shuffled pseudorapidity events.

More…

Measurements of transverse energy distributions in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 70 (2004) 054907, 2004.
Inspire Record 653797 DOI 10.17182/hepdata.98621

Transverse energy ($E_T$) distributions have been measured for Au+Au collisions at $\sqrt{s_{NN}}= 200$ GeV by the STAR collaboration at RHIC. $E_T$ is constructed from its hadronic and electromagnetic components, which have been measured separately. $E_T$ production for the most central collisions is well described by several theoretical models whose common feature is large energy density achieved early in the fireball evolution. The magnitude and centrality dependence of $E_T$ per charged particle agrees well with measurements at lower collision energy, indicating that the growth in $E_T$ for larger collision energy results from the growth in particle production. The electromagnetic fraction of the total $E_T$ is consistent with a final state dominated by mesons and independent of centrality.

16 data tables

Typical MIP spectrum. The hits correspond to isolated tracks with p > 1.25 GeV/c which project to EMC towers. The peak corresponds to the energy deposited by non-showering hadrons (MIP peak).

$p/E_{tower}$ spectrum for electron candidates, selected through $dE/dx$ from the TPC, with 1.5 < p < 5.0 GeV/c. A well defined electron peak is observed. The dashed line corresponds to the hadronic background in the $dE/dx$-identified electron sample.

Upper plot: points are measured $p/E_{tower}$ electron peak position as a function of the distance to the center of the tower. The solid line is from a calculation based on a full GEANT simulation of the detector response to electrons. Lower plot: points show measured energy deposited by electrons in the tower as a function of the momentum for distances to the center of the tower smaller than 2.0 cm. The first point is the electron equivalent energy of the minimum ionizing particles. The solid line is a second order polynomial fit of the data.

More…

J/$\psi$ production as a function of charged-particle multiplicity in p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}}~=~8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 162, 2020.
Inspire Record 1792996 DOI 10.17182/hepdata.97018

Inclusive J/$\psi$ yields and average transverse momenta in p-Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 8.16 TeV are measured as a function of the charged-particle pseudorapidity density with ALICE. The J/$\psi$ mesons are reconstructed at forward $(2.03 < y_{\rm cms} < 3.53)$ and backward ($-4.46 < y_{\rm cms} < -2.96$) center-of-mass rapidity in their dimuon decay channel while the charged-particle pseudorapidity density is measured around midrapidity. The J/$\psi$ yields at forward and backward rapidity normalized to their respective average values increase with the normalized charged-particle pseudorapidity density, the former showing a weaker increase than the latter. The normalized average transverse momenta at forward and backward rapidity manifest a steady increase from low to high charged-particle pseudorapidity density with a saturation beyond the average value.

6 data tables

Relative yield of inclusive J/psi as a function of relative charged-particle pseudorapidity density at forward rapidity 2.03 < y_cms < 3.53 (p-going direction).

Relative yield of inclusive J/psi as a function of relative charged-particle pseudorapidity density at backward rapidity -4.46 < y_cms < -2.96 (Pb-going direction).

Mean transverse momentum of inclusive J/psi as a function of the relative charged-particle pseudorapidity density at forward rapidity 2.03 < y_cms < 3.53 (p-going direction).

More…

Production of (anti-)$^3$He and (anti-)$^3$H in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 101 (2020) 044906, 2020.
Inspire Record 1762356 DOI 10.17182/hepdata.94416

The transverse momentum ($p_{\rm{T}}$) differential yields of (anti-)$^3$He and (anti-)$^3$H measured in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV with ALICE at the Large Hadron Collider (LHC) are presented. The ratios of the $p_{\rm{T}}$-integrated yields of (anti-)$^3$He and (anti-)$^3$H to the proton yields are reported, as well as the $p_{\rm{T}}$ dependence of the coalescence parameters $B_3$ for (anti-)$^3$He and (anti-)$^3$H. For (anti-)$^3$He, the results obtained in four classes of the mean charged-particle multiplicity density are also discussed. These results are compared to predictions from a canonical statistical hadronization model and coalescence approaches. An upper limit on the total yield of $^4\bar{\mathrm{He}}$ is determined.

24 data tables

Transverse momentum spectra of (anti-)$^3\mathrm{He}$ measured in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

Transverse momentum spectra of (anti-)$^3\mathrm{H}$ measured in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

$^3\overline{\mathrm{He}} /\,^3\mathrm{He}$ ratio in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

More…