Absolute measurements of proton-proton small-angle elastic scattering and total cross section at 10, 19 and 26 GeV/ c

Bellettini, G. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett. 14 (1965) 164-168, 1965.
Inspire Record 1392870 DOI 10.17182/hepdata.895

None

4 data tables

'1'. '2'. '3'.

No description provided.

No description provided.

More…

Proton-proton scattering at very small angles at 24 GeV/ c

Lohrmann, E. ; Meyer, H. ; Winzeler, H. ;
Phys.Lett. 13 (1964) 78-80, 1964.
Inspire Record 1392871 DOI 10.17182/hepdata.30656

None

1 data table

Proton-proton small angle scattering and total cross section of 10.0 GeV⧸c

Bellettini, G. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett. 19 (1966) 705-705, 1966.
Inspire Record 1389783 DOI 10.17182/hepdata.782

None

3 data tables

No description provided.

Axis error includes +- 0.0/0.0 contribution.

No description provided.



Measurement of rho, the ratio of the real to imaginary part of the anti-p p forward elastic scattering amplitude, at S**(1/2) = 1.8-TeV

The E710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Rev.Lett. 68 (1992) 2433-2436, 1992.
Inspire Record 320369 DOI 10.17182/hepdata.42565

We have measured ρ, the ratio of the real to the imaginary part of the p¯p forward elastic-scattering amplitude, at √s =1.8 TeV. Our result, ρ=0.140±0.069, is compared with extrapolations from lower-energy data based on dispersion relations, and with the UA4 value at √s =546 GeV.

2 data tables

Results of least square's fit to the distribution.

Total cross section from fit to data.


The Ratio, rho, of the real to the imaginary part of the anti-p p forward elastic scattering amplitude at s**(1/2) = 1.8-TeV

The E-811 collaboration Avila, C ; Baker, W.F ; DeSalvo, R ; et al.
Phys.Lett.B 537 (2002) 41-44, 2002.
Inspire Record 586322 DOI 10.17182/hepdata.42841

We have measured $\rho$ , the ratio of the real to the imaginary part of the $p \bar{p}$ forward elastic scattering amplitude, at $\sqrt{s}$ = 1.8  TeV. Our result is $\rho$ = 0.132 $\pm$ 0.056; this can be combined with a previous measurement at the same energy to give $\rho$ = 0.135 $\pm$ 0.044.

2 data tables

Measured value of the total cross section.

The measured value of the ratio of real to imaginary part of the forward scattering amplitude.


A precise measurement of the real part of the elastic scattering amplitude at the Sp(bar)pS.

The UA4/2 collaboration Augier, C. ; Bernard, D. ; Bourotte, J. ; et al.
Phys.Lett.B 316 (1993) 448-454, 1993.
Inspire Record 358433 DOI 10.17182/hepdata.28818

A precise measurement of p̄p elastic scattering in the Coulomb-strong interaction interference region was performed at the CERN Sp̄pS Collider at a centre-of-mass energy of 541 GeV. The ratio of the real to the imaginary part of the forward elastic scattering amplitude was found to be ρ = 0.135 ± 0.015. The slope of the exponential fall off of the strong interaction part was also measured to be b = 15.5 ± 0.1 GeV −2 .

2 data tables

No description provided.

Real part of amplitude extracted using a more precise UA4 measurement. (1 +RE(AMP)/IM(AMP)**2)SIG(TOT) = 63.5 +- 1.5 MB (Bozzo et al. PL 147B(1984)392).


Anti-proton He-4 interactions at 200-MeV/c

Balestra, F. ; Batusov, Yu.A. ; Bendiscioli, G. ; et al.
Phys.Lett.B 305 (1993) 18-22, 1993.
Inspire Record 362745 DOI 10.17182/hepdata.28940

The differential cross sections for antiproton elastic scattering on 4 He at 192.8 MeV/ c are measured. The annihilation cross section σ a = (377.6 ± 8.0) mb, the elastic cross section σ el = (206.3 ± 6.6) mb and the total p 4 He interaction cross section σ tot = (583.9 ± 10.4) mb are determined. The ratio of the real to imaginary part of the forward p 4 He amplitude is found: π =−0.17± 0.33 0.24 . Partial wave analysis reveals that the S, P and D waves are essential in this energy region.

7 data tables

Charged prong multiplicity distributions in pbar HE annihilation.

Mean charged particle multiplicity in pbar HE4 annihilations.

No description provided.

More…

Measurement of $d \sigma / d \Omega$ and A(on) in $\bar{p} p$ Elastic Scattering Between 497-{MeV}/$c$ and 1550-{MeV}/$c$

Kunne, R.A. ; Beard, C.I. ; Birsa, R. ; et al.
Nucl.Phys.B 323 (1989) 1-36, 1989.
Inspire Record 267175 DOI 10.17182/hepdata.48676

Measurements have been made of the differential cross section and asymmetry A on for p p elastic scattering at 15 incident momenta between 497 MeV/ c and 1550 MeV/ c . The angular range where both particles have enough energy to traverse target and setup has been covered. The results are compared with predictions of various N N potential models. None of these models fully explains the present results, although the general trend of the data is predicted correctly.

16 data tables

No description provided.

No description provided.

No description provided.

More…

Precise Comparison of Anti-proton - Proton and Proton Proton Forward Elastic Scattering at $\sqrt{s}=24$.3-{GeV}

The UA6 collaboration Breedon, R.E. ; Chapin, T.J. ; Cool, R.L. ; et al.
Phys.Lett.B 216 (1989) 459-465, 1989.
Inspire Record 267044 DOI 10.17182/hepdata.29854

We report results from a measurement of antiproton-proton and proton-proton small-angle elastic scattering at √ s = 24.3 GeV in the range 0.001 ⩽ | t | ⩽ 0.06 (GeV/ c ) 2 . The measurement was performed at the CERN p p Collider by using silicon detectors to observe protons recoiling from a hydrogen cluster-jet target intercepting the stored p and p beams. Fits to the measured differential cross sections yield the ratio of the real to the imaginary part of the forward nuclear scattering amplitude ρ and the nuclear slope parameter b for both p p and pp. We find that the difference Δρ = ρ ( p p ) − ρ( pp ) = 0.031 ± 0.010 agrees with conventional fits and disagrees with the “odderon” fit designed to accommodate the recent UA4 measurement of ρ( p p) at 546 GeV.

3 data tables

Data requested from authors.

No description provided.

Nuclear slopes fixed to world average.


The Real Part of the Proton - anti-Proton Elastic Scattering Amplitude at the Center-Of-Mass Energy of 546-GeV

The UA4 collaboration Bernard, Denis ; Bozzo, M. ; Braccini, P.L. ; et al.
Phys.Lett.B 198 (1987) 583, 1987.
Inspire Record 249671 DOI 10.17182/hepdata.30077

Proton-antiproton elastic scattering was measured at the CERN SPS Collider at the centr-of-mass energy s =546 GeV in the Coulomb interference region. The data provide information on the phase of the hadronic amplitude in the forward direction. The conventional analysis gives for the ratio ϱ of the real to the imaginary part of the hadronic amplitude the result ϱ =0.24±0.04.

2 data tables

Axis error includes +- 0.025/0.025 contribution (Normalisation was fixed using a previous UA4 measurement of the total cross section: sig(name=tot)*(1 + alpha**2)).

Best estimate of alpha(rho).


Real to Imaginary Ratio of the $\bar{p} p$ Forward Elastic Scattering Amplitude in the Momentum Range Between 180-{MeV}/$c$ and 590-{MeV}/$c$

Bruckner, W. ; Dobbeling, H. ; Guttner, F. ; et al.
Phys.Lett.B 158 (1985) 180-185, 1985.
Inspire Record 213992 DOI 10.17182/hepdata.30392

The real-to-imaginary ratio of the p p forward elastic scattering amplitude has been measured at the LEAR facility of CERN by the Coulomb-nuclear interference method at seven beam momenta between 181 and 590 MeV/ c . The ratio is positive at 590 MeV/ c , becomes negative below 500 MeV/ c , reaches a minimum at 260 MeV/ c and then crosses zero again at about 230 MeV/ c .

3 data tables

No description provided.

No description provided.

No description provided.


Measurement of Small Angle anti-Proton - Proton and Proton Proton Elastic Scattering at the CERN Intersecting Storage Rings

Amos, Norman A. ; Block, M.M. ; Bobbink, G.J. ; et al.
Nucl.Phys.B 262 (1985) 689-714, 1985.
Inspire Record 214689 DOI 10.17182/hepdata.33711

Antiproton-proton and proton-proton small-angle elastic scattering was measured for centre-of-mass energies s =30.6, 52.8 and 62.3 GeV at the CERN Intersectung Storage Rings. In addition, proton-proton elastic scattering was measured at s =23.5 GeV . Using the optical theorem, total cross sections are obtained with an accuracy of about 0.5% for proton-proton scattering and about 1% for antiproton-proton scattering. The measurement of the interference of the Coulomb scattering and the hadronic scattering permits a determination of the ratio of the real-to-imaginary part of the forward hadronic scattering amplitude. Also presented are measurements of the hadronic slope parameter.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Comparison of p$ \Bar{$p$}$ and p p Elastic Scattering at $S^{(1/2)}=52$.8-{GeV}

Amos, Norman A. ; Block, M. ; Bobbink, G. ; et al.
Phys.Lett.B 120 (1983) 460-464, 1983.
Inspire Record 181387 DOI 10.17182/hepdata.30816

Proton-antiproton and proton-proton elastic scattering have been measured in the four-momentum transfer range 0.001⩽| t |⩽0.06 GeV 2 for center-of-mass energy 52.8 GeV at the CERN Intersecting Storage Rings (ISR). Using the known pp total cross section, a simultaneous fit to the pp̄ and pp differential cross sections yields the pp̄ total cross section; in addition, we obtain the ratio of the real-to-imaginary part of the forward nuclear-scattering amplitude and the nuclear-slope parameter for both pp̄ and pp. Our results show conclusively that the pp̄ total cross section is rising at ISR energies and lend support to conventional theories in which the difference between the pp̄ and pp total cross section vanishes at very high energy.

5 data tables

No description provided.

RESULTS OF FIT.

No description provided.

More…

Comparison of Small Angle p$ \Bar{$p$}$ and p p Elastic Scattering at the {CERN} Intersecting Storage Rings

Amos, Norman A. ; Block, M.M. ; Bobbink, G.J. ; et al.
Phys.Lett.B 128 (1983) 343-348, 1983.
Inspire Record 190335 DOI 10.17182/hepdata.30667

Antiproton-proton and proton-proton small-angle elastic scattering have been measured for centre-of-mass energies √ s = 30.7 and 62.5 GeV at the CERN Intersecting Storage Rings (ISR). Antiproton-proton and proton-proton total cross sections are obtained using the optical theorem. The measurement of the Coulomb scattering and its interference with the nuclear scattering allows a determination of the ratio of the real-to-imaginary part of the forward nuclear scattering amplitude. Also presented are measurements for the nuclear slope parameter at √ s = 62.5 GeV. Our new results reinforce the conclusions drawn recently from our measurements at √ s = 52.8 GeV. In particular, the pp̄ total cross section is rising at ISR energies and should continue to rise well beyond these energies.

4 data tables

DATA REQUESTED FROM AUTHORS.

RESULTS OF FITS.

RESULTS OF FITS.

More…

Soft $\pi^- p$ and $p p$ Elastic Scattering in the Energy Range 30-{GeV} to 345-{GeV}

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Nucl.Phys.B 217 (1983) 285-335, 1983.
Inspire Record 182455 DOI 10.17182/hepdata.7556

Differential cross sections for π − p and pp elastic scattering have been measured at incident momenta ranging from 30 to 345 GeV and in the t range 0.002 (GeV/ c ) 2 ⩽ | t | ⩽ 0.04 (GeV/ c ) 2 . From the analysis of the data, the ratio ϱ ( t = 0) of the real to the imaginary parts of the forward scattering amplitude was determined together with the logarithmic slope b of the diffraction cone.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Experimental Results on $p p$ Forward Elastic Scattering and the Possibility of Universal Shrinkage of the Hadronic Diffraction Cone

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Phys.Lett.B 109 (1982) 124-128, 1982.
Inspire Record 168617 DOI 10.17182/hepdata.31001

The differential cross section of pp scattering has been measured in the energy region 100–300 GeV and in the t -range 0.002 < | t | < 0.04 (GeV/| c ) 2 . The results on the real part of the scattering amplitude agrees with dispersion relation calculations. We also report on our determination of the slope parameter b together with an analysis of the world data of b for different hadrons and different t -values. It is shown that the data are consistent with the hypothesis of a universal shrinkage of the hadronic diffraction cone at high energies.

1 data table

FROM FITS TO D(SIG)/DT IN THE COULOMB-NUCLEAR INTERFERENCE REGION, USING TOTAL CROSS SECTION VALUES FROM A. S. CARROLL ET AL., PL 80B, 423 (1979). ERRORS INCLUDE STATISTICAL ERRORS AND ERRORS IN NORMALIZATION AND IN SIG.


PROTON - HELIUM ELASTIC SCATTERING FROM 45-GeV TO 400-GeV

Bujak, A. ; Devenski, P. ; Jenkins, E. ; et al.
JINR-E1-81-289, 1981.
Inspire Record 167719 DOI 10.17182/hepdata.39553

None

12 data tables

AVERAGED DATA FOR 44.9 AND 45.5 GEV.

No description provided.

No description provided.

More…

Measurements of $\pi^- p$ Forward Elastic Scattering at High-energies

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Phys.Lett.B 109 (1982) 111, 1982.
Inspire Record 166767 DOI 10.17182/hepdata.31011

The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.

1 data table

RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).


Measurement of the Real to Imaginary Ratio of the $\bar{P} P$ Forward Amplitude at Beam Momenta Between 400-{GeV}/c and 730-{MeV}/c

Iwasaki, H. ; Aihara, H. ; Chiba, J. ; et al.
Phys.Lett.B 103 (1981) 247-250, 1981.
Inspire Record 170359 DOI 10.17182/hepdata.31184

Differential cross sections of p p forward elastic scattering were measured between 400 and 730 MeV/ c , and the real-to-imaginary ratio, ϱ, of the forward amplitude was deduced. We found that ρ increases from ∼ 0.1 to ∼ 0.4 in this momentum range. A dispersion-relation analysis shows the existence of a pole-like structure in the real part of the p p amplitude near threshold.

1 data table

REAL/IMAG RATIO OF FORWARD AMPLITUDE DETERMINED FROM FIT TO COULOMB-NUCLEARINTERFERENCE.


The Real Part of the Forward Elastic Nuclear Amplitude for p p, anti-p p, pi+ p, pi- p, K+ p, and K- p Scattering Between 70-GeV/c and 200-GeV/c

Fajardo, L.A. ; Majka, R. ; Marx, J.N. ; et al.
Phys.Rev.D 24 (1981) 46, 1981.
Inspire Record 152596 DOI 10.17182/hepdata.24028

We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.

1 data table

No description provided.


Elastic p p-scattering in the coulomb interference region in the momentum range 1.1 to 1.7 gev/c

Vorobyov, A.A. ; Denisov, A.S. ; Zalite, Yu.K. ; et al.
Phys.Lett.B 41 (1972) 639-641, 1972.
Inspire Record 85047 DOI 10.17182/hepdata.28216

Differential cross-sections for pp elastic scattering in the transfer momentum range 2 x 10 −3 ⩽ | t | ⩽ x 8 10 −3 (GeV/ c ) 2 were studied with a hydrogen filled ionization chamber which was used as a target and as a detector of the recoiled protons. The measurements have been done at P lab . = 1.11 GeV/ c , 1.28 GeV/ c , 1.34 GeV/ c , 1.40 GeV/ c and 1.70 GeV/ c . The real part of the spin independent forward scattering amplitude has been determined, the results being in agreement with the dispersion relation calculations.

1 data table

No description provided.


The Real Part of anti-p p Forward Elastic Scattering Amplitude at 0.7-GeV/c

Kaseno, H. ; Hamatsu, R. ; Kawano, K. ; et al.
Phys.Lett.B 61 (1976) 203-206, 1976.
Inspire Record 3400 DOI 10.17182/hepdata.27693

The differential cross sections of p p elastic scattering at 0.7 GeV/ c were obtained in the range 0.0018<| t |⩽0.0320 GeV 2 . From the interference between the Coulomb and the nuclear amplitude, the ratio of real to imaginary part of the forward nuclear amplitude was found to be +0.33±0.04.

3 data tables

No description provided.

No description provided.

FIT FOR FORWARD NUCLEAR AMPLITUDE IN COULOMB INTERFERENCE REGION.


STUDY OF THE DIFFERENTIAL CROSS-SECTION FOR THE REACTION K(L) p ---> K(S) p BETWEEN 5 AND 10-GeV/c INCIDENT MOMENTUM

Mugge, Marshall ; McQuate, David ; Morse, Robert ; et al.
Phys.Rev.D 20 (1979) 2105-2112, 1979.
Inspire Record 147369 DOI 10.17182/hepdata.4406

We discuss a measurement of the differential cross section for the reaction KLp→KSp for incident momenta between 5 and 10 GeV/c and the |t| region 0.025 to 0.5 (GeV/c)2, carried out using the SLAC 15-in. rapid-cycling hydrogen bubble chamber triggered by the K0 spectrometer facility. This hybrid detector allowed measurement of the KL beam momentum, measurement of the recoil-proton momentum, and measurement of the decay position and momentum of the KS. Over this momentum region the ratio of the real to imaginary part of the forward-scattering amplitude was determined to be 0.93±0.24 and the phase of the forward-scattering amplitude was determined to be -(138±7)°. A fit to the forward differential cross section of the form dσdt∝p2α(t)−2 to our data together with previous measurements of the KLp→KSp differential cross section at this and lower momenta yielded an α(0)=0.39±0.10 for the dominant ω Regge trajectory. The value of α(0) as determined from the phase φ=−π[α(0)+1]2 is 0.54±0.11.

4 data tables

No description provided.

FORWARD CROSS SECTION AND OPTICAL THEOREM USED TO DETERMINE PHASE OF FORWARD AMPLITUDE. RE(AMP)/IM(AMP) IS REAL(AMP)/IMAG(AMP).

No description provided.

More…

K0(L) p ---> K0(S) p SCATTERING FROM 1-GeV/c TO 10-GeV/c

Brandenburg, G.W. ; Johnson, William B. ; Leith, David W.G.S. ; et al.
Phys.Rev.D 9 (1974) 1939, 1974.
Inspire Record 81133 DOI 10.17182/hepdata.21986

The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.

22 data tables

No description provided.

No description provided.

No description provided.

More…