A new calibration method for charm jet identification validated with proton-proton collision events at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JINST 17 (2022) P03014, 2022.
Inspire Record 1961179 DOI 10.17182/hepdata.114864

Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate different miscalibration conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.

6 data tables

The shape calibration SF values as a function of CvsL and CvsB for DeepCSV-based c taggers for c jets

The shape calibration SF values as a function of CvsL and CvsB for DeepCSV-based c taggers for b jets

The shape calibration SF values as a function of CvsL and CvsB for DeepCSV-based c taggers for light-flavour jets

More…

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

22 data tables

Inclusive signal strength modifiers $\mu$.

Signal strength modifiers per production mode $\mu_i$.

Signal strength modifiers per decay mode $\mu^f$.

More…

A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

23 data tables

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbH channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bHbZ channel.

Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic 4-jet bZbZ channel.

More…

A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 933, 2023.
Inspire Record 2637936 DOI 10.17182/hepdata.137761

A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The 95% confidence level upper limit set on the branching fraction of the 125 GeV Higgs boson to invisible particles, $\mathcal{B}$(H $\to$ inv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous $\mathcal{B}$(H $\to$ inv) searches carried out at $\sqrt{s}$ = 7, 8, and 13 TeV in complementary production modes. The combined upper limit at 95% confidence level on $\mathcal{B}$(H $\to$ inv) is 0.15 (0.08 expected).

14 data tables

Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for hadronic final states of ttH and resolved VH channels, and their combination, using data from 2016--2018 and assuming a SM Higgs boson with a mass of 125 GeV.

Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using all available CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.

Observed and expected 95% CL upper limits on ${{(\sigma_{\text{H}}/\sigma_{\text{H}}^{\mathrm{SM}}) \times {{\mathcal{B}(\text{H} \to \text{inv})}}}}$ for the VBF, ttH, VH and ggH channels using Run2 CMS data, and their combination, assuming a SM Higgs boson with a mass of 125 GeV.

More…

A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 827, 2023.
Inspire Record 2639338 DOI 10.17182/hepdata.135797

A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp $\to$ pp + Z/$\gamma$ + X, in proton-tagged events from proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp $\to$ pp + Z/$\gamma$ + X are set.

35 data tables

Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-multi(−z) proton reconstruction categories.

Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for multi(+z)-single(−z) proton reconstruction categories.

Comparison of the $m_{miss}$ shapes for the simulated signal events within the fiducial region and those outside it, after including the effect of PU protons as describe in the text, for a generated $m_{X}$ mass of 1000 GeV. The distributions are shown for single(+z)-multi(−z) proton reconstruction categories.

More…

Analysis of the CP structure of the Yukawa coupling between the Higgs boson and $\tau$ leptons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2022) 012, 2022.
Inspire Record 1940967 DOI 10.17182/hepdata.104978

The first measurement of the CP structure of the Yukawa coupling between the Higgs boson and $\tau$ leptons is presented. The measurement is based on data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The analysis uses the angular correlation between the decay planes of $\tau$ leptons produced in Higgs boson decays. The effective mixing angle between CP-even and CP-odd $\tau$ Yukawa couplings is found to be $-$1 $\pm$ 19$^\circ$, compared to an expected value of 0 $\pm$ 21$^\circ$ at the 68.3% confidence level. The data disfavour the pure CP-odd scenario at 3.0 standard deviations. The results are compatible with predictions for the standard model Higgs boson.

7 data tables

Observed likelihood scan of $\alpha^{\mathrm{H}\tau\tau}$.

Expected likelihood scan of $\alpha^{\mathrm{H}\tau\tau}$.

Observed likelihood scan in the ($\alpha^{\mathrm{H}\tau\tau}$, $\mu$) plane.

More…

Azimuthal anisotropy of dijet events in PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 139, 2023.
Inspire Record 2165916 DOI 10.17182/hepdata.130961

The path-length dependent parton energy loss within the dense partonic medium created in lead-lead collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV is studied by determining the azimuthal anisotropies for dijets with high transverse momentum. The data were collected by the CMS experiment in 2018 and correspond to an integrated luminosity of 1.69 nb$^{-1}$. For events containing back-to-back jets, correlations in relative azimuthal angle and pseudorapidity ($\eta$) between jets and hadrons, and between two hadrons, are constructed. The anisotropies are expressed as the Fourier expansion coefficients $v_n$, $n = $ 2-4 of these azimuthal distributions. The dijet $v_n$ values are extracted from long-range (1.5 $\lt$$\vert\Delta\eta\vert$$\lt$ 2.5) components of these correlations, which suppresses the background contributions from jet fragmentation processes. Positive dijet $v_2$ values are observed which increase from central to more peripheral events, while the $v_3$ and $v_4$ values are consistent with zero within experimental uncertainties.

4 data tables

The dijet $v_{n}$ data points factorized using different associated hadron pT bins for 0-10 % centrality bin. The data points are corrected for the jet reconstruction bias effects.

The dijet $v_{n}$ data points factorized using different associated hadron pT bins for 10-30 % centrality bin. The data points are corrected for the jet reconstruction bias effects.

The dijet $v_{n}$ data points factorized using different associated hadron pT bins for 30-50 % centrality bin. The data points are corrected for the jet reconstruction bias effects.

More…

Azimuthal correlations in Z+jets events in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 722, 2023.
Inspire Record 2172990 DOI 10.17182/hepdata.133278

The production of Z bosons associated with jets is measured in pp collisions at $\sqrt{s}$ = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV is measured for different regions of the Z boson's $p_\mathrm{T}$(Z), from lower than 10 GeV to higher than 100 GeV. The azimuthal correlation $\Delta \phi$ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $p_\mathrm{T}$(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $p_\mathrm{T}$(Z) regions.

15 data tables

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $p_T<10$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $10<p_T<30$ GeV

The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $30<p_T<50$ GeV

More…

Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Combined search for electroweak production of winos, binos, higgsinos, and sleptons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SUS-21-008, 2024.
Inspire Record 2755433 DOI 10.17182/hepdata.145859

A combination of the results of several searches for the electroweak production of the supersymmetric partners of standard model bosons, and of charged leptons, is presented. All searches use proton-proton collision data at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018. The analyzed data correspond to an integrated luminosity of up to 137 fb$^{-1}$. The results are interpreted in terms of simplified models of supersymmetry. Two new interpretations are added with this combination: a model spectrum with the bino as the lightest supersymmetric particle together with mass-degenerate higgsinos decaying to the bino and a standard model boson, and the compressed-spectrum region of a previously studied model of slepton pair production. Improved analysis techniques are employed to optimize sensitivity for the compressed spectra in the wino and slepton pair production models. The results are consistent with expectations from the standard model. The combination provides a more comprehensive coverage of the model parameter space than the individual searches, extending the exclusion by up to 125 GeV, and also targets some of the intermediate gaps in the mass coverage.

28 data tables

Post-fit distribution of the $M(ll)$ variable for the low-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.

Post-fit distribution of the $M(ll)$ variable for the medium-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.

Post-fit distribution of the $M(ll)$ variable for the high-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.

More…