Multi-strange baryon production in Au Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 182301, 2004.
Inspire Record 624566 DOI 10.17182/hepdata.102321

The transverse mass spectra and mid-rapidity yields for $\Xi$s and $\Omega$s plus their anti-particles are presented. The 10% most central collision yields suggest that the amount of multi-strange particles produced per produced charged hadron increases from SPS to RHIC energies. A hydrodynamically inspired model fit to the spectra, which assumes a thermalized source, seems to indicate that these multi-strange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to $\pi$, K, p and $\Lambda$s.

19 data tables

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 0-10% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 10-25% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

$m_T$ spectra of $\Xi^-$ and $\bar{\Xi}^+$ for 25-75% centrality. Errors listed here are the quadrature sum of statistical and point-to-point systematic uncertainties. There is an additional overall $m_T$-independent systematic uncertainty of 10%.

More…

Particle dependence of azimuthal anisotropy and nuclear modification of particle production at moderate p(T) in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 052302, 2004.
Inspire Record 620309 DOI 10.17182/hepdata.93260

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.

9 data tables

The minimum bias (0-80% of the collision cross-section) v2(pT) of K0s. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of Lambda+Lambdabar. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of charged hadrons. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

More…

Rapidity and centrality dependence of proton and anti-proton production from Au-197 + Au-197 collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 70 (2004) 041901, 2004.
Inspire Record 621642 DOI 10.17182/hepdata.102320

We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.

11 data tables

$p$ differential yield. Systematic uncertainties are $\pm$10%.

$\bar{p}$ differential yield. Systematic uncertainties are $\pm$10%.

Rapidity distribution of $p$. Combined statitiscal uncertainty and systematic uncertainty from PID contramination. Systematic uncertainties from the track reconstruction efficiency are $\pm$25%.

More…

Evidence from d + Au measurements for final-state suppression of high p(T) hadrons in Au + Au collisions at RHIC.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 91 (2003) 072304, 2003.
Inspire Record 621394 DOI 10.17182/hepdata.98576

We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high $p_T$) in minimum bias and central d+Au collisions at $\sqrt{s_{NN}}$=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high $p_T$ previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.

5 data tables

Uncorrected charged particle multiplicity distributions measured in −3.8 < $\eta$ < −2.8 (Au-direction) for d+Au collisions. Points are for minimum bias (triangles) and peripheral (circles, ZDC-d single neutron) collisions. Both are normalized to the total number of d+Au collisions. Histograms are Glauber model calculations.

Inclusive $p_{T}$ distributions for minimum bias and central d+Au collisions, and non-singly diffractive p+p collisions. Hash marks at the top indicate bin boundaries for $p_{T}$ > 3.8 GeV/c.

$R_{AB}(p_{T})$ from Eq. 1 for minimum bias and central d+Au collisions, and central Au+Au collisions. The minimum bias d+Au data are displaced 100 MeV/c to the right for clarity. The error bars are the quadrature sum of the statistical and point-to-point systematic uncertainties. The bands show the normalization uncertainties, which are highly correlated point-to-point and between the two d+Au distributions.

More…

Transverse momentum and collision energy dependence of high p(T) hadron suppression in Au + Au collisions at ultrarelativistic energies.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 91 (2003) 172302, 2003.
Inspire Record 619063 DOI 10.17182/hepdata.93908

We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at \sqrtsNN=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for $5\lt\pT\lt12$ GeV/c. The collision energy dependence of the yields and the centrality and \pT dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of \pT-dependent suppression, which may be expected from models incorporating jet attentuation in cold nuclear matter or scattering of fragmentation hadrons.

4 data tables

Inclusive invariant pT distributions of (h+ + h−)/2 for centrality-selected Au+Au and p+p NSD interactions. Hash marks at the top indicate bin boundaries for pT>4 GeV/c.The invariant cross section for p+p is indicated on the right vertical axis.

R200/130(pT ) vs. pT for (h+ + h−)/2 for four different centrality bins. The overall normalization uncertainty is +6−14% for the 40-60% bin and is negligible for the other panels. Calculations are described in the text.

RAA(pT) (Eq. 1) for (h+ + h−)/2 in |η|<0.5, for centrality-selected Au+Au spectra relative to the measured p+p spectrum. The p+p spectrum is common to all panels. Calculations are described in the text.

More…

Critical behaviour in Au fragmentation at 10.7-A-GeV.

The EMU-1 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Eur.Phys.J.A 1 (1998) 77-83, 1998.
Inspire Record 467240 DOI 10.17182/hepdata.43765

The complete charge distribution of products from Au nuclei fragmenting in nuclear emulsion at 10.7A GeV has been measured. Multiplicities of produced particles and particles associated with the targe

2 data tables

No description provided.

No description provided.


Rescattering probed by the emission of slow target associated particles in high-energy heavy ion interactions

The EMU01 collaboration Adamovich, M.I ; Aggarwal, M.M ; Alexandrov, Y.A ; et al.
Phys.Lett.B 363 (1995) 230-236, 1995.
Inspire Record 406952 DOI 10.17182/hepdata.28438

In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.

6 data tables

No description provided.

PROJECTILE ASSOCIATED HE-FRAGMENTS.

No description provided.

More…

Si-28 (S-32) fragmentation at 3.7-A/GeV, 14.6-A/GeV and 200-A/GeV

The EMU1 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Z.Phys.A 351 (1995) 311-316, 1995.
Inspire Record 407109 DOI 10.17182/hepdata.16506

The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.

6 data tables

JINR.

BNL-815.

CERN-EMU-001.

More…

Local particle densities and global multiplicities in central heavy ion interactions at 3.7-A/GeV, 14.6-A/GeV, 60-A/GeV and 200-A/GeV

The EMU01 collaboration Adamovich, M.I. ; Aggarwal, M.M. ; Alexandrov, Y.A. ; et al.
Z.Phys.C 56 (1992) 509-520, 1992.
Inspire Record 334794 DOI 10.17182/hepdata.9290

The energy and centrality dependence of local particle pseudorapidity densities as well as validity of various parametrizations of the distributions are examined. The dispersion, σ, of the rapidity density distribution of produced particles varies slowly with centrality and is 0.80, 0.98, 1.21 and 1.41 for central interactions at 3.7, 14.6, 60 and 200A GeV incident energy, respectively, σ is found to be independent of the size of the interacting system at fixed energy. A novel way of representing the window dependence of the multiplicity as normalized variance versus inverse average multiplicity is outlined.

4 data tables

No description provided.

NUCLEUS IS AGBR, CENTRAL EVENTS.

No description provided.

More…

Dimuon Production by Neutrinos in the {Fermilab} 15-ft. Bubble Chamber at the Tevatron

The E632 collaboration Jain, V. ; Harris, F.A. ; Aderholz, M. ; et al.
Phys.Rev.D 41 (1990) 2057, 1990.
Inspire Record 281906 DOI 10.17182/hepdata.22938

The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.

4 data tables

No description provided.

No description provided.

No description provided.

More…