Measurement of the low-energy antitriton inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 848 (2024) 138337, 2024.
Inspire Record 2675130 DOI 10.17182/hepdata.145643

In this Letter, the first measurement of the inelastic cross section for antitriton$-$nucleus interactions is reported, covering the momentum range of $0.8 \leq p < 2.4$ GeV/$c$. The measurement is carried out using data recorded with the ALICE detector in pp and Pb$-$Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to $A=3$ carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter.

10 data tables

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in exp. data.

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 0.75).

Raw primary antitriton-to-triton ratio as a function of the momentum p_primary in MC (sigma_inel x 1.0).

More…

Version 2
K$^{0}_{\rm S}$- and (anti-)$\Lambda$-hadron correlations in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 945, 2021.
Inspire Record 1891391 DOI 10.17182/hepdata.114015

Two-particle azimuthal correlations are measured with the ALICE apparatus in pp collisions at $\sqrt{s} = 13$ TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson (K$^{0}_{\rm S}$) or baryon ($\Lambda$) with transverse momentum $p_{\rm T} > 3$ GeV/c is produced. Azimuthal correlations between kaons or $\Lambda$ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ($3 < p_{\rm T}^{\rm trigg} < 20$ GeV/$c$) and associated particle $p_{\rm T}$ (1 GeV/$c$$< p_{\rm T}^{\rm assoc} < p_{\rm T}^{\rm trigg}$), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either K$^{0}_{\rm S}$ or $\Lambda$($\overline{\Lambda}$) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.

162 data tables

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

Two-dimensional $K_S^0$-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

$\Delta\varphi$ projection of h-h correlation function with $3<p_{\mathrm{T}}^{\mathrm{trigg}}< 4 \mathrm{GeV}/c$ and $1 \mathrm{GeV}/c<p_{\mathrm{T}}^{\mathrm{assoc}}< p_{\mathrm{T}}^{\mathrm{trigg}} $

More…

First measurement of the absorption of $^{3}\overline{\rm He}$ nuclei in matter and impact on their propagation in the galaxy

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Nature Phys. 19 (2023) 61-71, 2023.
Inspire Record 2026264 DOI 10.17182/hepdata.133480

In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of $^{3}\overline{\rm He}$ when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as input to calculations of the transparency of our Galaxy to the propagation of $^{3}\overline{\rm He}$ stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing $^{3}\overline{\rm He}$ momentum from 25% to 90% for cosmic-ray sources. The results indicate that $^{3}\overline{\rm He}$ nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation.

21 data tables

Raw primary antihelium3-to-helium3 ratio as a function of the momentum p_primary.

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with default sigma_inel(3Hebar).

Raw primary antihelium3-to-helium3 ratio from Geant4-based MC simulations as a function of the momentum p_primary with sigma_inel(3Hebar)x0.5.

More…

Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 569, 2017.
Inspire Record 1507157 DOI 10.17182/hepdata.78803

Two-particle angular correlations were measured in pp collisions at $\sqrt{s} = 7$ TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon--anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.

6 data tables

$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm pp+\overline{p}\overline{p}$, $\rm p\Lambda+\overline{p}\overline{\Lambda}$, and $\Lambda\Lambda+\overline{\Lambda}\overline{\Lambda}$.

$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm p\overline{p}$, $\rm p\overline{\Lambda}+\overline{p}\Lambda$, and $\Lambda\overline{\Lambda}$.

$\Delta\eta$ integrated projections of correlation functions for combined pairs of $\rm pp+\overline{p}\overline{p}$ for two transverse momentum intervals (a) $0.5 < p_{\rm T} < 1.25$ GeV/$c$ and (b) $1.25 < p_{\rm T} < 2.5$ GeV/$c$.

More…

Measurement of the Inelastic Proton-Proton Cross-Section at sqrt{s}=7 TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nature Commun. 2 (2011) 463, 2011.
Inspire Record 894867 DOI 10.17182/hepdata.58283

A first measurement of the inelastic cross-section is presented for proton-proton collisions at a center of mass energy sqrt{s}=7 TeV using the ATLAS detector at the Large Hadron Collider. In a dataset corresponding to an integrated luminosity of 20 mub-1, events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of $60.3 +/- 2.1 mb is measured for xi > 5x10^-6, where xi=M_X^2/s is calculated from the invariant mass, M_X, of hadrons selected using the largest rapidity gap in the event. For diffractive events this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.

1 data table

The measured and extrapolated inelastic cross section. The first error is the experimental error and the second (sys) error is the error in the extrapolation.


Rapidity gap cross sections measured with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 72 (2012) 1926, 2012.
Inspire Record 1084540 DOI 10.17182/hepdata.58497

Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.

5 data tables

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 200 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 400 MeV in the gap.

The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 600 MeV in the gap.

More…

Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Rev.D 84 (2011) 112004, 2011.
Inspire Record 884741 DOI 10.17182/hepdata.74220

We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.

14 data tables

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

More…

Search for the $Z\gamma$ decay mode of new high-mass resonances in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138394, 2024.
Inspire Record 2695554 DOI 10.17182/hepdata.141854

This letter presents a search for narrow, high-mass resonances in the $Z\gamma$ final state with the $Z$ boson decaying into a pair of electrons or muons. The $\sqrt{s}=13$ TeV $pp$ collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb$^{-1}$. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into $Z\gamma$. For spin-0 resonances produced via gluon-gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon-gluon fusion (or quark-antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV.

6 data tables

The main sources of systematic uncertainty for the $X\to Z \gamma$ search. The gluon-gluon fusion spin-0 signal samples produced at $m_{X} = [220-3400]$ GeV are used to evaluate the systematic uncertainty. The ranges for the uncertainties span the variations among different categories and different $m_{X}$ resonance masses. The uncertainty due to the spurious signal uncertainty is reported as the absolute number of events. In the table, "ID" for photon and electrons refers to identification efficiency uncertainties, "ISO" refers to isolation efficiency uncertainties, "TRIG" refers to trigger efficiency uncertainties, "RECO" refers to muon reconstruction efficiency uncertainty and "TTVA" refers to muon track-to-vertex-association efficiency uncertainty.

The observed (expected) upper limits of $\sigma(pp\to X)\cdot\mathcal{B}(X\to Z\gamma)$ for spin-0 and spin-2 heavy resonances at 95\% CL. $m_{X}$ varies from 220 GeV to 3400~\GeV.

Impacts of grouped dominant systematic uncertainties. The impact corresponds to the relative variation of the asymptotic expected upper limit of $\sigma(pp \rightarrow X) \times BR(X \rightarrow Z\gamma)$ from $m_{X}=220$ GeV to $m_{X}=3.4$ TeV when re-evaluating the quantity by fixing the corresponding nuisance parameters to the best-fit values, while keeping others free to float. The impact of total systematic uncertainties are performed in the last row.

More…

Strong constraints on jet quenching in centrality-dependent $p$+Pb collisions at 5.02 TeV from ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 072301, 2023.
Inspire Record 2090791 DOI 10.17182/hepdata.130943

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.

8 data tables

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons opposite to a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).

The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).

More…

Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at sqrt(s)=13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2017) 046, 2017.
Inspire Record 1511284 DOI 10.17182/hepdata.76842

The differential cross section for inclusive particle production as a function of energy in proton-proton collisions at a center-of-mass energy of 13 TeV is measured in the very forward region of the CMS detector. The measurement is based on data collected with the CMS apparatus at the LHC, and corresponds to an integrated luminosity of 0.35 inverse microbarns. The energy is measured in the CASTOR calorimeter, which covers the pseudorapidity region -6.6 < eta < -5.2. The results are given as a function of the total energy deposited in CASTOR, as well as of its electromagnetic and hadronic components. The spectra are sensitive to the modeling of multiparton interactions in pp collisions, and provide new constraints for hadronic interaction models used in collider and in high energy cosmic ray physics.

6 data tables

Differential cross section as a function of the electromagnetic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.

Differential cross section as a function of the total energy in the region −6.6 < eta < −5.2 for events with xi>10−6.

Differential cross section as a function of the hadronic energy in the region −6.6 < eta < −5.2 for events with xi>10−6.

More…