Transverse target spin asymmetries in exclusive $\rho^0$ muoproduction

The COMPASS collaboration Adolph, C ; Alekseev, M G ; Alexakhin, V Yu ; et al.
Phys.Lett.B 731 (2014) 19-26, 2014.
Inspire Record 1257385 DOI 10.17182/hepdata.66743

Exclusive production of $\rho^0$ mesons was studied at the COMPASS experiment by scattering 160 GeV/$c$ muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured as a function of $Q^2$, $x_{Bj}$, or $p_{T}^{2}$. The $\sin \phi_S$ asymmetry is found to be $-0.019 \pm 0.008(stat.) \pm 0.003(syst.)$. All other asymmetries are also found to be of small magnitude and consistent with zero within experimental uncertainties. Very recent calculations using a GPD-based model agree well with the present results. The data is interpreted as evidence for the existence of chiral-odd, transverse generalized parton distributions.

6 data tables

Single-spin azimuthal asymmetries for a transversely (T) polarised target and unpolarised (U) beam.

Single-spin azimuthal asymmetries for a transversely (T) polarised target and unpolarised (U) beam.

Single-spin azimuthal asymmetries for a transversely (T) polarised target and unpolarised (U) beam.

More…

High-precision Measurements of piP Elastic Differential Cross Sections in the Second Resonance Region

The EPECUR collaboration Alekseev, I.G. ; Andreev, V.A. ; Bordyuzhin, I.G. ; et al.
Phys.Rev.C 91 (2015) 025205, 2015.
Inspire Record 1323450 DOI 10.17182/hepdata.67659

Cross sections for pi+-p elastic scattering have been measured to high precision, for beam momenta between 800 and 1240 MeV/c, by the EPECUR Collaboration, using the ITEP proton synchrotron. The data precision allows comparisons of the existing partial-wave analyses (PWA) on a level not possible previously. These comparisons imply that updated PWA are required.

249 data tables

Differential cross section of elastic $\pi^+$p-scattering at P= 800.25 MeV/c. Errors shown are statistical only.

Differential cross section of elastic $\pi^+$p-scattering at P= 803.75 MeV/c. Errors shown are statistical only.

Differential cross section of elastic $\pi^+$p-scattering at P= 807.25 MeV/c. Errors shown are statistical only.

More…

Open charm yields in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 94 (2005) 062301, 2005.
Inspire Record 653868 DOI 10.17182/hepdata.43117

Mid-rapidity open charm spectra from direct reconstruction of $D^{0}$($\bar{D^0}$)$\to K^{\mp}\pi^{\pm}$ in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at \srt = 200 GeV are reported. The $D^{0}$($\bar{D^0}$) spectrum covers a transverse momentum ($p_T$) range of 0.1 $<p_T<$ 3 \GeVc whereas the electron spectra cover a range of 1 $<p_T<$ 4 GeV/$c$. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is $d\sigma^{NN}_{c\bar{c}}/dy$=0.30$\pm$0.04 (stat.)$\pm$0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmoniumm results in A+A collisions are discussed.

8 data tables

Inclusive electrons yield versus transverse momentum in D+AU collisions Data points at PT = 2.2, 2.7 and 3.5 GeV/c was obtained using only the TPC (Time Projection Chamber) and cover a pseudo-rapidity range of -1<eta<1, while other points were obtained using both a prototypeTime-of-Flight System and the TPC and cover a pseudo-rapidity range of -1<eta<0.

Inclusive electrons yield versus transverse momentum in P+P collisions.

D0 yield versus transverse momentum in D+AU collisions.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 9.2 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 024911, 2010.
Inspire Record 831944 DOI 10.17182/hepdata.93265

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at $\sqrt{s_{NN}}$ = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (<pT>), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar $\sqrt{s_{NN}}$ from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, <pT>, and particle ratios are discussed. These results also demonstrate the readiness of the STAR detector to undertake the proposed QCD critical point search and the exploration of the QCD phase diagram at RHIC.

27 data tables

Second order event plane resolution measured in the TPC as a function of collision centrality for.

Efficiency × acceptance for reconstructed pions, kaons, and protons in the TPC as a function of p_T at midrapidity.

Percentage of pion background contribution estimated from HIJING+GEANT as a function of p_T at midrapidity.

More…

Particle dependence of azimuthal anisotropy and nuclear modification of particle production at moderate p(T) in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 052302, 2004.
Inspire Record 620309 DOI 10.17182/hepdata.93260

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.

9 data tables

The minimum bias (0-80% of the collision cross-section) v2(pT) of K0s. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of Lambda+Lambdabar. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

The minimum bias (0-80% of the collision cross-section) v2(pT) of charged hadrons. Errors listed include statistical and point-to-point systematic uncertainties from the background. Additional non-flow systematic uncertainties are approximately -20%.

More…

Pion interferometry in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 71 (2005) 044906, 2005.
Inspire Record 664843 DOI 10.17182/hepdata.93263

We present a systematic analysis of two-pion interferometry in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV using the STAR detector at RHIC. We extract the HBT radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianess of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast wave parameterizations. The expansion of the source and its relation with the initial energy density distribution is studied.

44 data tables

1D correlation function for different values of SL (antisplitting cut).

1D correlation functions for differeny values of the maximum fraction of merged hits allowed.

Projections of the 3 dimensional correlation function and corresponding fits for negative pions from the 0-5% most central events and k_T = [150,250] MeV/c according to the standard and Bowler-Sinyukov procedures.

More…

Minijet deformation and charge-independent angular correlations on momentum subspace (eta, phi) in Au-Au collisions at s(NN)**(1/2) = 130-GeV

The STAR collaboration Adams, John ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 73 (2006) 064907, 2006.
Inspire Record 663650 DOI 10.17182/hepdata.102089

First measurements of charge-independent correlations on angular difference variables $\eta_1 - \eta_2$ (pseudorapidity) and $\phi_1 - \phi_2$ (azimuth) are presented for primary charged hadrons with transverse momentum $0.15 \leq p_t \leq 2$ GeV/$c$ and $|\eta| \leq 1.3$ from Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Strong charge-independent angular correlations are observed associated with jet-like structures and elliptic flow. The width of the jet-like peak on $\eta_1 - \eta_2$ increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. New methods of jet analysis introduced here provide evidence for nonperturbative QCD medium effects in heavy ion collisions.

4 data tables

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for most-central collisions.

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-central collisions.

Two-particle CI joint autocorrelations $\widehat{N}(\widehat{r}-1)$ on $(\eta_{\Delta}, \phi_{\Delta})$ for mid-peripheral collisions.

More…

The Multiplicity dependence of inclusive p(t) spectra from p-p collisions at s**(1/2) = 200-GeV

The STAR collaboration Adams, J. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 74 (2006) 032006, 2006.
Inspire Record 719969 DOI 10.17182/hepdata.102084

We report measurements of transverse momentum $p_t$ spectra for ten event multiplicity classes of p-p collisions at $\sqrt{s} = 200$ GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a L\'evy distribution on transverse mass $m_t$, and a part with amplitude proportional to multiplicity squared and described by a gaussian distribution on transverse rapidity $y_t$. The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p-p collisions. This analysis then provides the first isolation of the hard component of the $p_t$ spectrum as a distribution of simple form on $y_t$.

5 data tables

FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.

FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.

FIG. 2. Left: Relative residuals from power-law fits to $p_{t}$ spectra in Fig. 1. The hatched band represents the expected statistical errors for STAR data. Right: Exponents $n$ from power-law fits to data (solid points) and to corresponding twocomponent fixed-model functions (open circles, see Sec. VI) compared to the two-component fixed-model Lévy exponent $12.8 \pm 0.15$ (hatched band). NOTE 1: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty. NOTE 2: The "data_stat" uncertainty corresponds to the expected statistical error (hatched band).

More…

Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 172301, 2009.
Inspire Record 819318 DOI 10.17182/hepdata.102090

Forward-backward multiplicity correlation strengths have been measured for the first time with the STAR detector for Au+Au and $\textit{p+p}$ collisions at $\sqrt{s_{NN}}$ = 200 GeV. Strong short and long range correlations are seen in central (0-10%) Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in 40-50% Au+Au collisions. The results are in agreement with predictions from the Dual Parton and Color Glass Condensate models.

2 data tables

FB Correlation strength for Au+Au at different centralities and p+p reactions as a function of $\Delta\eta$.

Backward-forward dispersion, $D_{bf}^{2}$ and forward-forward dispersion $D_{bf}^{2}$ for Au+Au 0-10% centrality and p+p reactions as a function of $\Delta\eta$.