Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV $pp$ collision data with two top quarks and missing transverse momentum in the final state

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 503, 2023.
Inspire Record 2180393 DOI 10.17182/hepdata.129623

This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.

40 data tables

Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.

More…

Search in diphoton and dielectron final states for displaced production of Higgs or $Z$ bosons with the ATLAS detector in $\sqrt{s} = 13$ TeV $pp$ collisions

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 012012, 2023.
Inspire Record 2654099 DOI 10.17182/hepdata.135829

A search is presented for displaced production of Higgs bosons or $Z$ bosons, originating from the decay of a neutral long-lived particle (LLP) and reconstructed in the decay modes $H\rightarrow \gamma\gamma$ and $Z\rightarrow ee$. The analysis uses the full Run 2 data set of proton$-$proton collisions delivered by the LHC at an energy of $\sqrt{s}=13$ TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb$^{-1}$. Exploiting the capabilities of the ATLAS liquid argon calorimeter to precisely measure the arrival times and trajectories of electromagnetic objects, the analysis searches for the signature of pairs of photons or electrons which arise from a common displaced vertex and which arrive after some delay at the calorimeter. The results are interpreted in a gauge-mediated supersymmetry breaking model with pair-produced higgsinos that decay to LLPs, and each LLP subsequently decays into either a Higgs boson or a $Z$ boson. The final state includes at least two particles that escape direct detection, giving rise to missing transverse momentum. No significant excess is observed above the background expectation. The results are used to set upper limits on the cross section for higgsino pair production, up to a $\tilde\chi^0_1$ mass of 369 (704) GeV for decays with 100% branching ratio of $\tilde\chi^0_1$ to Higgs ($Z$) bosons for a $\tilde\chi^0_1$ lifetime of 2 ns. A model-independent limit is also set on the production of pairs of photons or electrons with a significant delay in arrival at the calorimeter.

45 data tables

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

More…

Version 2
Search for Higgs boson pair production in association with a vector boson in $pp$ collisions at $\sqrt{s}=$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 519, 2023.
Inspire Record 2164067 DOI 10.17182/hepdata.131626

This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.

58 data tables

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.

Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a W boson decaying to a charged lepton and a neutrino.

More…

Version 2
Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle $X$ in hadronic final states using $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 052009, 2023.
Inspire Record 2666488 DOI 10.17182/hepdata.135828

A search is presented for a heavy resonance $Y$ decaying into a Standard Model Higgs boson $H$ and a new particle $X$ in a fully hadronic final state. The full Large Hadron Collider Run 2 dataset of proton-proton collisions at $\sqrt{s}= 13$ TeV collected by the ATLAS detector from 2015 to 2018 is used, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets the high $Y$-mass region, where the $H$ and $X$ have a significant Lorentz boost in the laboratory frame. A novel signal region is implemented using anomaly detection, where events are selected solely because of their incompatibility with a learned background-only model. It is defined using a jet-level tagger for signal-model-independent selection of the boosted $X$ particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark $X$ decay into two quarks, covering topologies where the $X$ is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into $b\bar{b}$, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}b\bar{b}$) for signals with $m_Y$ between 1.5 and 6 TeV and $m_X$ between 65 and 3000 GeV.

12 data tables

Acceptance times efficiency for signal grid in anomaly signal region.

Acceptance times efficiency for signal grid in anomaly signal region.

Acceptance times efficiency for signal grid in merged two-prong signal region.

More…

Search for single production of a vector-like $T$ quark decaying into a Higgs boson and top quark with fully hadronic final states using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 092012, 2022.
Inspire Record 2013051 DOI 10.17182/hepdata.131522

A search is made for a vector-like $T$ quark decaying into a Higgs boson and a top quark in 13 TeV proton-proton collisions using the ATLAS detector at the Large Hadron Collider with a data sample corresponding to an integrated luminosity of 139 fb$^{-1}$. The Higgs-boson and top-quark candidates are identified in the all-hadronic decay mode, where $H\to b\bar{b}$ and $t\to b W \to b q \bar{q}^\prime$ are reconstructed as large-radius jets. The candidate Higgs boson, top quark, and associated B-hadrons are identified using tagging algorithms. No significant excess is observed above the background, so limits are set on the production cross-section of a singlet $T$ quark at 95% confidence level, depending on the mass, $m_T$, and coupling, $\kappa_T$, of the vector-like $T$ quark to Standard Model particles. In the considered mass range between 1.0 and 2.3 TeV, the upper limit on the allowed coupling values increases with $m_T$ from a minimum value of 0.35 for 1.07 < $m_T$ < 1.4 TeV to 1.6 for $m_T$ = 2.3 TeV.

8 data tables

Dijet invariant mass distribution for the $SR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Dijet invariant mass distribution for the $ttNR$ showing the results of the model when fitted to the data. A $T$-quark hypothesis with $m_{T} = 1.6$ TeV and $\kappa_{T} = 0.5$ is used in the fit.

Observed and expected 95% CL upper limits on the single $T$-quark coupling $\kappa_{T}$ as a function of $m_{T}$ are shown.

More…

Observation of single-top-quark production in association with a photon using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 181901, 2023.
Inspire Record 2628980 DOI 10.17182/hepdata.134244

This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb$^{-1}$ of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 $\pm$ 23 (stat.) $^{+75}_{-71}$ (syst.) fb, to be compared with the standard model prediction of 515 $^{+36}_{-42}$ fb at next-to-leading order in QCD.

26 data tables

This table shows the values for $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)$ and $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q}$ obtained by a profile-likelihood fit in the fiducial parton-level phase space (defined in Table 1) and particle-level phase space (defined in Table 2), respectively.

Distribution of the reconstructed top-quark mass in the $W\gamma\,$CR before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.

Distribution of the NN output in the 0fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.

More…

Search for pair-produced higgsinos decaying via Higgs or $Z$ bosons to final states containing a pair of photons and a pair of $b$-jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-039, 2024.
Inspire Record 2773395 DOI 10.17182/hepdata.144072

A search is presented for the pair production of higgsinos $\tilde{\chi}$ in gauge-mediated supersymmetry models, where the lightest neutralinos $\tilde{\chi}_1^0$ decay into a light gravitino $\tilde{G}$ either via a Higgs $h$ or $Z$ boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or $Z$ boson decays into a $b\bar{b}$ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the $b\bar{b}$ mass with the mass of the Higgs or $Z$ boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for $\tilde{\chi}_1^0\rightarrow h\tilde{G}$. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to $h\tilde{G}$ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple $b$-jets, targeting different decays of the electroweak bosons.

25 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Histograms:</b><ul> <li><a href=?table=Distribution1>Figure 3a: $m_{\gamma\gamma}$ Distribution in VR1</a> <li><a href=?table=Distribution2>Figure 3b: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR1</a> <li><a href=?table=Distribution3>Figure 3c: $m_{\gamma\gamma}$ Distribution in VR2</a> <li><a href=?table=Distribution4>Figure 3d: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR2</a> <li><a href=?table=Distribution5>Figure 4a: N-1 $m_{\gamma\gamma}$ Distribution for SR1h</a> <li><a href=?table=Distribution6>Figure 4b: N-1 $m_{\gamma\gamma}$ Distribution for SR1Z</a> <li><a href=?table=Distribution7>Figure 4c: N-1 $m_{\gamma\gamma}$ Distribution for SR2</a> <li><a href=?table=Distribution8>Auxiliary Figure 1: Signal and Validation Region Yields</a> </ul> <b>Tables:</b><ul> <li><a href=?table=YieldsTable1>Table 3: Signal Region Yields & Model-independent Limits</a> <li><a href=?table=Cutflow1>Auxiliary Table 1: Benchmark Signal Cutflows</a> </ul> <b>Cross section limits:</b><ul> <li><a href=?table=X-sectionU.L.1>Figure 5: 1D Cross-section Limits</a> <li><a href=?table=X-sectionU.L.2>Auxiliary Figure 3: 2D Cross-section Limits</a> </ul> <b>2D CL limits:</b><ul> <li><a href=?table=Exclusioncontour1>Figure 6: Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour2>Figure 6: $+1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour3>Figure 6: $-1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour4>Figure 6: Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour5>Figure 6: $+1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour6>Figure 6: $-1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> </ul> <b>2D Acceptance and Efficiency maps:</b><ul> <li><a href=?table=Acceptance1>Auxiliary Figure 4a: Acceptances SR1h</a> <li><a href=?table=Acceptance2>Auxiliary Figure 4b: Acceptances SR1Z</a> <li><a href=?table=Acceptance3>Auxiliary Figure 4c: Acceptances SR2</a> <li><a href=?table=Efficiency1>Auxiliary Figure 5a: Efficiencies SR1h</a> <li><a href=?table=Efficiency2>Auxiliary Figure 5b: Efficiencies SR1Z</a> <li><a href=?table=Efficiency3>Auxiliary Figure 5c: Efficiencies SR2</a> </ul>

Distribution of the diphoton invariant mass in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

Distribution of the missing transverse momentum in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

More…

Search for pair production of higgsinos in events with two Higgs bosons and missing transverse momentum in $\sqrt{s}=13$ TeV $pp$ collisions at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-278, 2024.
Inspire Record 2751932 DOI 10.17182/hepdata.136030

This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into $b\bar{b}$, leading to a reconstructed final state with at least three energetic $b$-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploits 126 (139) fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.

66 data tables

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

Post-fit SR yields of the high-mass channel. The upper panel shows the observed number of events, as well the post-fit background predictions in each region. The bottom panel shows the ratio of the observed data and the total background prediction. The shaded areas correspond to the total statistical and systematic uncertainties obtained after the fit and described in Section 6.

More…

Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

31 data tables

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…

A statistical combination of ATLAS Run 2 searches for charginos and neutralinos at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2024-018, 2024.
Inspire Record 2758009 DOI 10.17182/hepdata.149530

Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.

38 data tables

Expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

More…