Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Integrated fiducial cross sections with statistical and systematic uncertainties for CEP of $\pi^+\pi^-$, $K^+K^-$ and $p\bar{p}$ pairs in two ranges of azimuthal angle difference, $\Delta\varphi$, between the two forward-scattered protons. Fiducial region definition: * central state - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ ($\pi^+$, $\pi^-$) - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$, $min(p_{\mathrm{T}}^+, p_{\mathrm{T}}^-) < 0.7~\mathrm{GeV}$ ($K^+$, $K^-$) - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$, $min(p_{\mathrm{T}}^+, p_{\mathrm{T}}^-) < 1.1~\mathrm{GeV}$ ($p$, $\bar{p}$) - $|\eta| < 0.7$ (all species) * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Results of the fit to extrapolated $d\sigma/dm(\pi^+\pi^-)$ in two ranges of azimuthal angle difference $\Delta\varphi$ between forward-scattered protons. The fit describes the cross-section extrapolated to Lorentz-invariant phase-space defined below: - $|y(\pi^+\pi^-)| < 0.4$ - $0.05~\mathrm{GeV}^2 < -t_1, -t_2 < 0.16~\mathrm{GeV}^2$ The experimental systematic uncertainties "(syst.)" are calculated as the quadratic sum of the differences between the nominal fit result and the result of the fit to $d\sigma/dm(\pi^+\pi^-)$ with each systematic effect. The uncertainties related to the extrapolation "(model.)" are quoted as the largest deviation from the nominal fit result.

Results of the fit to extrapolated $d\sigma/dm(\pi^+\pi^-)$ in two ranges of azimuthal angle difference $\Delta\varphi$ between forward-scattered protons. The fit describes the cross-section extrapolated to Lorentz-invariant phase-space defined below: - $|y(\pi^+\pi^-)| < 0.4$ - $0.05~\mathrm{GeV}^2 < -t_1, -t_2 < 0.16~\mathrm{GeV}^2$ The experimental systematic uncertainties "(syst.)" are calculated as the quadratic sum of the differences between the nominal fit result and the result of the fit to $d\sigma/dm(\pi^+\pi^-)$ with each systematic effect. The uncertainties related to the extrapolation "(model.)" are quoted as the largest deviation from the nominal fit result.

More…

Sub-threshold production of K$^{0}_{s}$ mesons and ${\Lambda}$ hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett. B793 (2019) 457-463, 2019.
Inspire Record 1709767 DOI 10.17182/hepdata.90954

We present first data on sub-threshold production of K0 s mesons and {\Lambda} hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We observe an universal <Apart> scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their <Apart> scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of the latter can simultaneously describe all observables with reasonable \c{hi}2 values.

18 data tables

Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.

Example of $\Lambda$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $100-150 MeV/c^{2}$.

$K^{0}_{S}$ and $\Lambda$ multiplicities in full phase space and inverse slopes at mid-rapidity $T_{Eff}$ for a given centrality.

More…

Search for the Higgs boson decaying to two muons in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 021801, 2019.
Inspire Record 1682776 DOI 10.17182/hepdata.88058

A search for the Higgs boson decaying to two oppositely charged muons is presented using data recorded by the CMS experiment at the CERN LHC in 2016 at a center-of-mass energy s=13  TeV, corresponding to an integrated luminosity of 35.9  fb-1. Data are found to be compatible with the predicted background. For a Higgs boson with a mass of 125.09 GeV, the 95% confidence level observed (background-only expected) upper limit on the production cross section times the branching fraction to a pair of muons is found to be 3.0 (2.5) times the standard model expectation. In combination with data recorded at center-of-mass energies s=7 and 8 TeV, the background-only expected upper limit improves to 2.2 times the standard model value with a standard model expected significance of 1.0 standard deviation. The corresponding observed upper limit is 2.9 with an observed significance of 0.9 standard deviation. This corresponds to an observed upper limit on the standard model Higgs boson branching fraction to muons of 6.4×10-4 and to an observed signal strength of 1.0±1.0(stat)±0.1(syst).

6 data tables

The 95% CL upper limit on the signal strength modifier in the region around the Higgs boson mass using the 13 TeV data sets together with the expected limit obtained in the background-only hypothesis.

The 95% CL upper limit on the signal strength modifier in the region around the Higgs boson mass for the combination of the 7, 8, and 13 TeV data sets together with the expected limit obtained in the background-only hypothesis and in the signal-plus-background hypothesis for the SM Higgs boson with m_H=125 GeV.

The significance of the incompatibility with the background-only hypothesis using the 13 TeV data sets.

More…

Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $ \sqrt{s}=13 $ TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1811 (2018) 113, 2018.
Inspire Record 1682495 DOI 10.17182/hepdata.83912

Measurements of the differential jet cross section are presented as a function of the jet mass in dijet events, in bins of jet transverse momentum, with and without a jet grooming algorithm. The data have been recorded by the CMS Collaboration in proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 2.3 fb$^{−1}$. The absolute cross sections show slightly different jet transverse momentum spectra in data and Monte Carlo event generators for the settings used. Removing this transverse momentum dependence, the normalized cross section for ungroomed jets is consistent with the prediction from Monte Carlo event generators for masses below 30% of the transverse momentum. The normalized cross section for groomed jets is measured with higher precision than the ungroomed cross section. Semi-analytical calculations of the jet mass beyond leading logarithmic accuracy are compared to data, as well as predictions at leading order and next-to-leading order, which include parton showering and hadronization. Overall, in the normalized cross section, the theoretical predictions agree with the measured cross sections within the uncertainties for masses from 10 to 30% of the jet transverse momentum.

48 data tables

Absolute cross section for ungroomed jets for pt = 200-260

Absolute cross section for ungroomed jets for pt = 260-350

Absolute cross section for ungroomed jets for pt = 350-460

More…

Measurement of charged particle spectra in minimum-bias events from proton–proton collisions at $\sqrt{s}=13\,\text {TeV} $

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J. C78 (2018) 697, 2018.
Inspire Record 1680318 DOI 10.17182/hepdata.84709

Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range $|\eta | < 2.4$ for charged particles with transverse momenta satisfying $p_{\mathrm {T}} > 0.5\,\text {GeV} $ in proton–proton collisions at a center-of-mass energy of $\sqrt{s} = 13\,\text {TeV} $ . Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic $\mathrm {p}$ $\mathrm {p}$ data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.

15 data tables

Charged particles are selected with $p_{\rm T} > 0.5 $ GeV and $|\eta| < 2.4$. Trigger particles correspond to those with energy $ E> 5 $ GeV located in $side^-$ (defined as $-5 < \eta < -3$) and/or $side^+$ (defined as $3 < \eta < 5$). A veto corresponds to the absence of a trigger particle with $ E> 5 $GeV in $side^-$ and/or $side^+$ .

Charged particles are selected with $p_{\rm T} > 0.5 $ GeV and $|\eta| < 2.4$. Trigger particles correspond to those with energy $ E> 5 $ GeV located in $side^-$ (defined as $-5 < \eta < -3$) and/or $side^+$ (defined as $3 < \eta < 5$). A veto corresponds to the absence of a trigger particle with $ E> 5 $GeV in $side^-$ and/or $side^+$ .

Charged particles are selected with $p_{\rm T} > 0.5 $ GeV and $|\eta| < 2.4$. Trigger particles correspond to those with energy $ E> 5 $ GeV located in $side^-$ (defined as $-5 < \eta < -3$) and/or $side^+$ (defined as $3 < \eta < 5$). A veto corresponds to the absence of a trigger particle with $ E> 5 $GeV in $side^-$ and/or $side^+$ .

More…

Measurement of differential cross sections for Z boson pair production in association with jets at $\sqrt{s} =$ 8 and 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett. B789 (2019) 19-44, 2019.
Inspire Record 1680022 DOI 10.17182/hepdata.89171

This Letter reports measurements of differential cross sections for the production of two Z bosons in association with jets in proton-proton collisions at $\sqrt{s} =$ 8 and 13 TeV. The analysis is based on data samples collected at the LHC with the CMS detector, corresponding to integrated luminosities of 19.7 and 35.9 fb$^{-1}$ at 8 and 13 TeV, respectively. The measurements are performed in the leptonic decay modes ZZ $\to\ell^+ \ell^- \ell'^+ \ell'^-$, where $\ell,\ell' =$ e, $\mu$. The differential cross sections as a function of the jet multiplicity, the transverse momentum $p_\mathrm{T}$, and pseudorapidity of the $p_\mathrm{T}$-leading and subleading jets are presented. In addition, the differential cross sections as a function of variables sensitive to the vector boson scattering, such as the invariant mass of the two $p_\mathrm{T}$-leading jets and their pseudorapidity separation, are reported. The results are compared to theoretical predictions and found in good agreement within the theoretical and experimental uncertainties.

16 data tables

Data from Fig. 2 upper left. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ differential cross section at $\sqrt{s} = 8$ TeV as a function of the jet multiplicity with $|\eta| < 4.7$.

Data from Fig. 3 upper left panel. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ normalized differential cross section at $\sqrt{s} = 8$ TeV as a function of the jet multiplicity with $|\eta| < 4.7$.

Data from Fig. 3 lower left panel. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ normalized differential cross section at $\sqrt{s} = 8$ TeV as a function of the jet multiplicity with $|\eta| < 2.4$.

More…

Observation of the Z$\to\psi\ell^+\ell^-$ decay in pp collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 141801, 2018.
Inspire Record 1677496 DOI 10.17182/hepdata.85743

This Letter presents the observation of the rare Z boson decay Z $\to\psi\ell^+\ell^-$. Here, $\psi$ represents contributions from direct J/$\psi$ and $\psi$(2S) $\to$ J/$\psi X$, $\ell^+\ell^-$ is a pair of electrons or muons, and the J/$\psi$ meson is detected via its decay to $\mu^+\mu^-$. The sample of proton-proton collision data, collected by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV, corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The signal is observed with a significance in excess of 5 standard deviations. After subtraction of the $\psi$(2S) $\to$ J/$\psi X$ contribution, the ratio of the branching fraction of the exclusive decay Z $\to\psi\ell^+\ell^-$ to the decay Z $\to\mu^+\mu^-\mu^+\mu^-$ within a fiducial phase space is measured to be $\mathcal{B}($Z $\to\psi\ell^+\ell^-) / \mathcal{B}($Z $\to\mu^+\mu^-\mu^+\mu^-) =$ 0.67 $\pm$ 0.18 (stat) $\pm$ 0.05 (syst).

1 data table

branching fraction ratio of Z->J/psi+2 leptons over Z->4muons for the phase space defined above


Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 1808 (2018) 152, 2018.
Inspire Record 1677276 DOI 10.17182/hepdata.86134

A search for a narrow-width resonance decaying into two Higgs bosons, each decaying into a bottom quark-antiquark pair, is presented. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 35.9 fb$^{-1}$ at $\sqrt{s}=$ 13 TeV recorded by the CMS detector at the LHC. No evidence for such a signal is observed. Upper limits are set on the product of the production cross section for the resonance and the branching fraction for the selected decay mode in the resonance mass range from 260 to 1200 GeV.

2 data tables

The observed and expected upper limits on the cross section for a spin-2 resonance X $\rightarrow$ H(bb) H(bb) at 95% CL, using the asymptotic CLs method

The observed and expected upper limits on the cross section for a spin-0 resonance X $\rightarrow$ H(bb) H(bb) at 95% CL, using the asymptotic CLs method


Prompt and nonprompt J/$\psi$ production and nuclear modification in $p$Pb collisions at $\sqrt{s_{\text{NN}}}= 8.16$ TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
Phys.Lett. B774 (2017) 159-178, 2017.
Inspire Record 1606329 DOI 10.17182/hepdata.79799

The production of J/$\psi$ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=8.16$ TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J/$\psi$ production are measured as functions of the J/$\psi$ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.

16 data tables

The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame measured in the proton-lead beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.

The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $-5.0 < y^* < -2.5$ in the nucleon-nucleon centre-of-mass frame measured in the lead-proton beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty

The double-differential cross sections for prompt $J/\psi$ production, assuming no polarisation, as a function of transverse momentum for the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.

More…

Test of lepton universality with $B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-}$ decays

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 1708 (2017) 055, 2017.
Inspire Record 1599846 DOI 10.17182/hepdata.77815

A test of lepton universality, performed by measuring the ratio of the branching fractions of the B$^{0}$ → K$^{*0}$ μ$^{+}$ μ$^{−}$ and B$^{0}$ → K$^{*0}$ e$^{+}$ e$^{−}$ decays, $ {R}_{K^{*0}} $ , is presented. The K$^{*0}$ meson is reconstructed in the final state K$^{+}$ π$^{−}$, which is required to have an invariant mass within 100 MeV/c$^{2}$ of the known K$^{*}$(892)$^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3 fb$^{−1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The ratio is measured in two regions of the dilepton invariant mass squared, q$^{2}$, to be $ {R}_{K^{*0}}=\left\{\begin{array}{l}{0.66_{-}^{+}}_{0.07}^{0.11}\left(\mathrm{stat}\right)\pm 0.03\left(\mathrm{syst}\right)\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\kern1em 0.045<{q}^2<1.1\kern0.5em {\mathrm{GeV}}^2/{c}^4,\hfill \\ {}{0.69_{-}^{+}}_{0.07}^{0.11}\left(\mathrm{stat}\right)\pm 0.05\left(\mathrm{syst}\right)\kern1em \mathrm{f}\mathrm{o}\mathrm{r}\kern1em 1.1<{q}^2<6.0\kern0.5em {\mathrm{GeV}}^2/{c}^4.\hfill \end{array}\right. $

2 data tables

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the low-q2 bin ($0.045 < q^2 < 1.1$ GeV$^{2}/c^4$).

Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the central-q2 bin ($1.1 < q^2 < 6.0$ GeV$^{2}/c^4$).


Deep sub-threshold $\phi$ production in Au+Au collisions

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett. B778 (2018) 403-407, 2018.
Inspire Record 1519164 DOI 10.17182/hepdata.92099

We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.

12 data tables

Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.

$K^{+}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 25 and 50 $MeV/c^{2}$.

$K^{-}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 50 and 75 $MeV/c^{2}$.

More…

Measurements of double-helicity asymmetries in inclusive $J/\psi$ production in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev. D94 (2016) 112008, 2016.
Inspire Record 1467456 DOI 10.17182/hepdata.82575

We report the double-helicity asymmetry, ALLJ/ψ, in inclusive J/ψ production at forward rapidity as a function of transverse momentum pT and rapidity |y|. The data analyzed were taken during s=510  GeV longitudinally polarized p+p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the PHENIX detector. At this collision energy, J/ψ particles are predominantly produced through gluon-gluon scatterings, thus ALLJ/ψ is sensitive to the gluon polarization inside the proton. We measured ALLJ/ψ by detecting the decay daughter muon pairs μ+μ- within the PHENIX muon spectrometers in the rapidity range 1.2<|y|<2.2. In this kinematic range, we measured the ALLJ/ψ to be 0.012±0.010 (stat) ±0.003 (syst). The ALLJ/ψ can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken x: one at moderate range x≈5×10-2 where recent data of jet and π0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-x region x≈2×10-3. Thus our new results could be used to further constrain the gluon polarization for x<5×10-2.

1 data table

$A_{LL}^{J/\psi}$ as a function of $p_T$ or $|y|$. $N_{J/\psi}^{2\sigma}$ is the $J/\psi$ counting within its $2\sigma$ mass window. The column of Type A systematic uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. $\Delta A_{LL}$ (Rel. Lumi.) is the global systematic uncertainty from relative luminosity measurements. $\Delta A_{LL}$ (Polarization) is the systematic uncertainty from the beam polarization measurement: a zero indicates an uncertainty $< 0.001$.


Photoproduction of the $f_1(1285)$ Meson

The CLAS collaboration Dickson, R. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev. C93 (2016) 065202, 2016.
Inspire Record 1452551 DOI 10.17182/hepdata.72793
1 data table

Differential cross section for $\gamma p \to f_1(1285) p \to \eta \pi^+ \pi^- p$ in nanobarns/steradian. The point-to-point uncertainties are given in separate statistical and systematic contributions.


Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope

The ANTARES collaboration Adrian-Martinez, S. ; Albert, A. ; Andre, M. ; et al.
Phys.Lett. B759 (2016) 69-74, 2016.
Inspire Record 1426493 DOI 10.17182/hepdata.77062

A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ− .

3 data tables

Upper limit on neutrino flux coming from the Sun for different annihiliation channels and WIMP masses. Limits for the $W^+W^-$ channel cannot be produced for WIMP masses below the mass of the $W$ boson.

Upper limit on spin-dependent cross-section for different annihiliation channels and WIMP masses. Limits for the $W^+W^-$ channel cannot be produced for WIMP masses below the mass of the $W$ boson.

Upper limit on spin-independent cross-section for different annihiliation channels and WIMP masses. Limits for the $W^+W^-$ channel cannot be produced for WIMP masses below the mass of the $W$ boson.


Measurement of the Multiple-Muon Charge Ratio in the MINOS Far Detector

The MINOS collaboration Adamson, P. ; Anghel, I. ; Aurisano, A. ; et al.
Phys.Rev. D93 (2016) 052017, 2016.
Inspire Record 1419065 DOI 10.17182/hepdata.77051

The charge ratio, Rμ=Nμ+/Nμ-, for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be Rμ=1.104±0.006(stat)-0.010+0.009(syst). This measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions at TeV energies.

1 data table

Efficiency-corrected charge ratios as a function of measured muon multiplicity, $M$.


Measurement of the I=1/2 $K \pi$ $\mathcal{S}$-wave amplitude from Dalitz plot analyses of $\eta_c \to K \bar K \pi$ in two-photon interactions

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev. D93 (2016) 012005, 2016.
Inspire Record 1403544 DOI 10.17182/hepdata.76968

We study the processes $\gamma \gamma \to K^0_S K^{\pm}\pi^{\mp}$ and $\gamma \gamma \to K^+ K^- \pi^0$ using a data sample of 519~$fb^{-1}$ recorded with the BaBar detector operating at the SLAC PEP-II asymmetric-energy $e^+ e^-$ collider at center-of-mass energies at and near the $\Upsilon(nS)$ ($n = 2,3,4$) resonances. We observe $\eta_c$ decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the $I=1/2$ $K \pi$ $\mathcal{S}$-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behaviour for the phase up to a mass of 1.5 $GeV/c^2$. In contrast, the amplitudes show very marked differences. The data require the presence of a new $a_0(1950)$ resonance with parameters $m=1931 \pm 14 \pm 22 \ MeV/c^2$ and $\Gamma=271 \pm 22 \pm 29 \ MeV$.

2 data tables

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^0_{\scriptscriptstyle S} K^{\pm}\pi^{\mp}$. The amplitudes and phases in the mass interval 14 are fixed to constant values.

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^+ K^- \pi^0$. The amplitudes and phases in the mass interval 14 are fixed to constant values.


Measurement of angular asymmetries in the decays $B \to K^*ℓ^+ℓ^-$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev. D93 (2016) 052015, 2016.
Inspire Record 1391152 DOI 10.17182/hepdata.75484

We study the lepton forward-backward asymmetry AFB and the longitudinal K* polarization FL, as well as an observable P2 derived from them, in the rare decays B→K*ℓ+ℓ-, where ℓ+ℓ- is either e+e- or μ+μ-, using the full sample of 471 million BB¯ events collected at the ϒ(4S) resonance with the BABAR, detector at the PEP-II e+e- collider. We separately fit and report results for the K*0(892)ℓ+ℓ- and K*+(892)ℓ+ℓ- final states, as well as their combination K*ℓ+ℓ-, in five disjoint dilepton mass-squared bins. An angular analysis of B+→K*+ℓ+ℓ- decays is presented here for the first time.

3 data tables

$F_L$ angular fit results.

$A_{FB}$ angular fit results.

$P_2$ results with total uncertainties.


Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev. D92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The e+e-→K+K- cross section and charged-kaon electromagnetic form factor are measured in the e+e- center-of-mass energy range (E) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469  fb-1 of data collected with the BABAR detector at the PEP-II2 e+e- collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than 1/E2 and approaches the asymptotic QCD prediction. Production of the K+K- final state through the J/ψ and ψ(2S) intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between electromagnetic (single-photon) and strong amplitudes in J/ψ and ψ(2S)→K+K- decays. The values of the branching fractions measured in the reaction e+e-→K+K- are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about ±5% for the J/ψ meson and ±15% for the ψ(2S) meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Collins asymmetries in inclusive charged $KK$ and $K\pi$ pairs produced in $e^+e^-$ annihilation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev. D92 (2015) 111101, 2015.
Inspire Record 1377201 DOI 10.17182/hepdata.73750

We present measurements of Collins asymmetries in the inclusive process e+e-→h1h2X, h1h2=KK, Kπ, ππ, at the center-of-mass energy of 10.6 GeV, using a data sample of 468  fb-1 collected by the BABAR experiment at the PEP-II B factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike sign to like sign, and unlike sign to all charged h1h2 pairs, which increase with hadron energies. The Kπ asymmetries are similar to those measured for the ππ pairs, whereas those measured for high-energy KK pairs are, in general, larger.

6 data tables

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for kaon pairs. In the first column, the $z$ bins and their respective mean values for the kaon in one hemisphere are reported; in the following column, the same variables for the second kaon are shown; in the third column the mean value of $\sin^2\theta_{2}/(1+\cos^2\theta_{2})$ is summarized, calculated in the RF0 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $KK$ pair and dividing by the number of $KK$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

Light quark ($uds$) Collins asymmetries obtained by fitting the U/L and U/C double ratios as a function of ($z_1$,$z_2$) for $K\pi$ hadron pairs. In the first column, the $z$ bins and their respective mean values for the hadron ($K$ or $\pi$) in one hemisphere are reported; in the following column, the same variables for the second hadron ($K$ or $\pi$) are shown; in the third column the mean value of $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ is summarized, calculated in the RF12 frame; in the last two columns the asymmetry results are summarized. The mean values of the quantities reported in the table are calculated by summing the corresponding values for each $K\pi$ pair and dividing by the number of $K\pi$ pairs that fall into each ($z_1$,$z_2$) interval. Note that the $A^{UL}$ and $A^{UC}$ results are strongly correlated since they are obtained by using the same data set.

More…

Measurement of parity-violating spin asymmetries in W$^{\pm}$ production at midrapidity in longitudinally polarized $p$$+$$p$ collisions

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev. D93 (2016) 051103, 2016.
Inspire Record 1365091 DOI 10.17182/hepdata.73691

We present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W±/Z decays, produced in longitudinally polarized p+p collisions at center of mass energies of s=500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W-boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240  pb-1, which exceeds previous PHENIX published results by a factor of more than 27. These high Q2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly MW/s=0.16.

1 data table

Longitudinal single-spin asymmetries, $A_L$, for the 2011 and 2012 data sets (combined) spanning the entire $\eta$ range of PHENIX ($\left|\eta\right|<0.35$), for the 2013 data set separated into two $\eta$ bins, and for the combined 2011-2013 data sets.


Cross section and transverse single-spin asymmetry of $\eta$ mesons in $p^{\uparrow}+p$ collisions at $\sqrt{s}=200$ GeV at forward rapidity

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev. D90 (2014) 072008, 2014.
Inspire Record 1300542 DOI 10.17182/hepdata.64267
4 data tables

The measured ETA meson cross section, E*D3(SIG)/DP**3, versus PT at forward rapidity. The statistical and systematic uncertainties are type-A and type-B uncertainties respectively.

ASYM(PEAK) and ASYM(BG) for ETA mesons measured as a function of XF in the range 0.3 < ABS(XF) < 0.7 from the 4X4B triggered dataset. The values represented are the weighted mean of the South and North MPC (Muon Piston Calorimeter). The uncertainties listed are statistical only.

ASYM for ETA mesons measured as a function of XF in the range 0.2 < ABS(XF) < 0.7. Uncertainties listed are those due to the statistics, the XF uncorrelated uncertainties due to extracting the yields, and the correlated relative luminosity uncertainty.

More…

Observation of $Z$ production in proton-lead collisions at LHCb

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
JHEP 1409 (2014) 030, 2014.
Inspire Record 1300150 DOI 10.17182/hepdata.64260
2 data tables

The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.

The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.


Low-mass vector-meson production at forward rapidity in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev. D90 (2014) 052002, 2014.
Inspire Record 1296835 DOI 10.17182/hepdata.64159

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.

3 data tables

Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.


Exclusive ${\pi}^0$ electroproduction at $W>2$ GeV with CLAS

The CLAS collaboration Bedlinskiy, I. ; Kubarovsky, V. ; Niccolai, S. ; et al.
Phys.Rev. C90 (2014) 025205, 2014.
Inspire Record 1294143 DOI 10.17182/hepdata.64122
18 data tables

The structure functions for Q**2 = 1.14 - 1.16 GeV**2 and XB = 0.131 - 0.133 as functions of t.

The structure functions for Q**2 = 1.38 GeV**2 and XB = 0.169 - 0.170 as functions of t.

The structure functions for Q**2 = 1.61 GeV**2 and XB = 0.186 - 0.187 as functions of t.

More…

Medium effects in proton-induced $K^{0}$ production at 3.5 GeV

The HADES collaboration Agakishiev, G. ; Arnold, O. ; Belver, D. ; et al.
Phys.Rev. C90 (2014) 054906, 2014.
Inspire Record 1292844 DOI 10.17182/hepdata.64407
2 data tables

The K0 production cross section in P P collisions.

The K0 production cross section in P + NB collisions. The uncertainty given on SIG(P NB --> K0 X) is the dominating absolute normalization uncertainty.