D_s meson production at central rapidity in proton--proton collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 718 (2012) 279-294, 2012.
Inspire Record 1126963 DOI 10.17182/hepdata.62306

The $p_{\rm T}$-differential inclusive production cross section of the prompt charm-strange meson $\rm D_s^+$ in the rapidity range $|y|<0.5$ was measured in proton-proton collisions at $\sqrt{s}=7$ TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of $2.98 \times 10^8$ events collected with a minimum-bias trigger. The corresponding integrated luminosity is $L_{\rm int}=4.8$/nb. Reconstructing the decay ${\rm D_s^{+}\to \phi\pi^+}$, with $\phi\to {\rm K}^-{\rm K}^+$, and its charge conjugate, about 480 ${\rm D_s^{\pm}}$ mesons were counted, after selection cuts, in the transverse momentum range $2<p_{\rm T}<12$ Gev/$c$. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${\rm D_s^+}$) were determined both as a function of $p_{\rm T}$ and integrated over $p_{\rm T}$ after extrapolating to full $p_{\rm T}$ range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in $\rm e^+e^-$, ep and pp interactions at various centre-of-mass energies.

7 data tables

pT-differential inclusive cross section in |y| < 0.5 for prompt D_s^+ meson production in pp collisions at sqrt(s) = 7 TeV.

pT-integrated inclusive cross section in |y| < 0.5 for prompt D_s^+ meson production in pp collisions at sqrt(s) = 7 TeV. The latter three systematic uncertainties arise from extrapolating the visible cross section to the full pT range, luminosity, and the branching ratio, respectively.

Ratio of D^+ to D^0 meson production cross sections in |y| < 0.5 as a function of pT.

More…

Measurement of prompt J/psi and beauty hadron production cross sections at mid-rapidity in pp collisions at sort(s)= 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 11 (2012) 065, 2012.
Inspire Record 1116251 DOI 10.17182/hepdata.60001

The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at sqrt{s}=7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L_int = 5.6nb-1. The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p_t>1.3 GeV/c and rapidity |y|<0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the Psi(2S) and Csi_c resonances, is sigma_prompt-J/psi(pt > 1.3 GeV/c, |y| < 0.9) = 8.3 +- 0.8(stat.) +- 1.1(syst.) + 1.5 - 1.4(syst. pol.) micro barn. The cross section for the production of b-hadrons decaying to J/psi with p_t>1.3 GeV/c and |y|<0.9 is sigma_{J/psi<-h_B} = 1.46 +- 0.38(stat.) + 0.26 -0.32(syst.) micro barn. The results are compared to QCD model predictions. The shape of the p_t and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b-bbar pair total cross section and dsigma/dy at mid-rapidity.

7 data tables

The fraction of J/PSI from the decay of b-hadrons as a function of PT. The (sys) error is the non-correlated systematic error. The last 4 columns are the variations produced assuming different polarization scenarios: Collins-Soper(CS) or Helicity(HE) reference frames with fully transverse(LAM=+1) or longitudinal(LAM=-1) polarizations.

The double differential production cross section for J/PSI from all sources as a function of PT. The first (sys) error is the correlated and the second the non-correlated systematic error. The last 4 columns are the variations produced assuming different polarization scenarios: Collins-Soper(CS) or Helicity(HE) reference frames with fully transverse(LAM=+1) or longitudinal(LAM=-1) polarizations.

The double differential production cross section for prompt J/PSI as a function of PT. The first (sys) error is the correlated and the second the non-correlated systematic error. The last 4 columns are the variations produced assuming different polarization scenarios: Collins-Soper(CS) or Helicity(HE) reference frames with fully transverse(LAM=+1) or longitudinal(LAM=-1) polarizations.

More…

Pseudorapidity density of charged particles p-Pb collisions at sqrt(sNN) = 5.02 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 110 (2013) 032301, 2013.
Inspire Record 1190545 DOI 10.17182/hepdata.60099

The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV is presented. The average value at midrapidity is measured to be $16.81 \pm 0.71$ (syst.), which corresponds to $2.14 \pm 0.17$ (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at $\sqrt{s_{\rm NN}} = 0.2$ TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions.

1 data table

The pseudorapidity density of charged particles in the lab. frame.


Multi-strange baryon production in pp collisions at $\sqrt{s}$ = 7 TeV with ALICE

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 712 (2012) 309-318, 2012.
Inspire Record 1097057 DOI 10.17182/hepdata.60477

A measurement of the multi-strange $\Xi^-$ and $\Omega^-$ baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at centre of mass energy of 7 TeV. The transverse momentum ($p_{\rm T}$) distributions were studied at mid-rapidity (|y| < 0.5) in the range of 0.6 < $p_{\rm T}$ < 8.5 GeV/$c$ for $\Xi^-$ and $\Xi^+$ baryons, and in the range of 0.8 < $p_{\rm T}$ < 5 GeV/$c$ for $\Omega^-$ and $\Omega^+$. Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current LHC data has allowed us to measure a difference between the mean $p_{\rm T}$ of $\Xi^-$ ($\Xi^+$) and $\Omega^-$ ($\Omega^+$). Particle yields, mean $p_{\rm T}$, and the spectra in the intermediate $p_{\rm T}$ range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for $\Omega^-$ ($\Omega^+$). This PYTHIA tune approaches the $p_{\rm T}$ spectra of $\Xi^-$ and $\Xi^+$ baryons below $p_{\rm T}$ < 0.85 GeV/$c$ and describes the $\Xi^-$ and $\Xi^+$ spectra above $p_{\rm T}$ > 6.0 GeV/$c$. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of ($\Omega^{-}+\Omega^+)/(\Xi^-+\Xi^+)$ as a function of transverse mass.

3 data tables

pT differential yield for OMEGA- and OMEGABAR+ production in P-P collisions in the rapidity range -5 to 0.5. Note: there is no division by (2.pi.pT) included in the ordinate values.

pT differential yield for XI- and XIBAR+ production in P-P collisions in the rapidity range -5 to 0.5. Note: there is no division by (2.pi.pT) included in the ordinate values.

Ratio of (OMEGA-+OMEGABAR+) to (XI-+XIBAR+) production as a function of MT-M0. Note: the binning in (mT-m0) is the consequence of the pT binning of the Omega spectra.


J/psi polarization in pp collisions at sqrt(s)=7 TeV

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 108 (2012) 082001, 2012.
Inspire Record 944730 DOI 10.17182/hepdata.73005

We have studied J/psi production in pp collisions at $\sqrt{s}=7$ TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/$\psi$ polarization parameters $\lambda_{\theta}$ and $\lambda_\phi$ were obtained. The study was performed in the kinematic region 2.5<y<4, 2<$p_{\rm T}$<8 GeV/$c$, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.

4 data tables

$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.

$\lambda_\phi$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.

$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the Collins-Soper reference frame.

More…

Heavy flavour decay muon production at forward rapidity in proton--proton collisions at \sqrt(s) = 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 708 (2012) 265-275, 2012.
Inspire Record 1084981 DOI 10.17182/hepdata.58676

The production of muons from heavy flavour decays is measured at forward rapidity in proton-proton collisions at $\sqrt{s} = 7$ TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity $L_{\rm int} = 16.5$ nb$^{-1}$. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5 < y < 4, over the transverse momentum range 2 < $p_{\rm T}$ < 12 GeV/$c$. The results are compared to predictions based on perturbative QCD calculations.

7 data tables

pT-differential production cross section of muons from heavy flavour decays, in the rapidity range 2.5<y<4.

y-differential production cross section of muons from heavy flavour decays, in the range 2<pT<12 GeV/C.

pT-differential production cross section of muons from heavy flavour decays, in the rapidity range 2.5<y<2.8.

More…

Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at sqrt(s)=0.9, 2.76 and 7 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 72 (2012) 2124, 2012.
Inspire Record 1115186 DOI 10.17182/hepdata.58857

Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.

7 data tables

pp @ 900 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 7000 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

pp @ 2760 GeV, Mean Transverse Sphericity (y) vs Multiplicity.

More…

Underlying Event measurements in pp collisions at sqrt(s) = 0.9 and 7 TeV with the ALICE experiment at the LHC

The ALICE collaboration Abelev, Betty ; Abrahantes Quintana, Arian ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 116, 2012.
Inspire Record 1080735 DOI 10.17182/hepdata.58863

We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.

23 data tables

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 7000 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.

Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.5 GeV. The data is shown for the three azimuthal regions.

More…

Measurement of Event Background Fluctuations for Charged Particle Jet Reconstruction in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 03 (2012) 053, 2012.
Inspire Record 1084331 DOI 10.17182/hepdata.58285

The effect of event background fluctuations on charged particle jet reconstruction in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV has been measured with the ALICE experiment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high $p_{\rm T}$ particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-$k_{\rm T}$ jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track $p_{\rm T}$ between 0.15 GeV/$c$ and 2 GeV/$c$. For embedded jets reconstructed from charged particles with $p_{\rm T} > 0.15$ GeV/$c$, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion background is measured to be 11.3 GeV/$c$ (standard deviation) for the 10% most central Pb-Pb collisions, slightly larger than the value of 11.0 GeV/$c$ measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/$c$, which will generate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0 GeV/$c$ for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra.

7 data tables

DeltaPT of random cones in the 10% most central events for three types of random cone probes with a minimum track PT of 0.15 GeV. (1) sampling all the events, (2) avoiding overlap with the leading jet candidate in the event and (3) after randomizing the (ETA,PHI) direction of the tracks hence destroying any correlations.

DeltaPT of random cones in the 10% most central events for three regions with a minimum track PT of 0.15 GeV. (1) the in-plane orientation where the angle between the reconstructed event plane and the random cone axis is < 30 degrees, (2) the out-of plane orientation where this angle is > 60 degrees and (3) the intermediate region where this angle is between 30 and 60 degrees.

Dependence of the standard deviation on the uncorrected charged particle multiplicity. As in figure 2 the data are given for three different random cone probes: (1) sampling all the events, (2) avoiding overlap with the leading jet candidate in the event and (3) after randomizing the (ETA,PHI) direction of the tracks hence destroying any correlations.

More…

Pion, Kaon, and Proton Production in Central Pb--Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 109 (2012) 252301, 2012.
Inspire Record 1126966 DOI 10.17182/hepdata.59720

In this Letter we report the first results on $\pi^\pm$, K$^\pm$, p and $\mathrm {p\overline{p}}$ production at mid-rapidity ($\left|y\right|<0.5$) in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured by the ALICE experiment at the LHC. The $p_{\rm T}$ distributions and yields are compared to previous results at $\sqrt{s_{\rm NN}}$ = 200 GeV and expectations from hydrodynamic and thermal models. The spectral shapes indicate a strong increase of the radial flow velocity with $\sqrt{s_{\rm NN}}$, which in hydrodynamic models is expected as a consequence of the increasing particle density. While the ${\rm K}/\pi$ ratio is in line with predictions from the thermal model, the ${\rm p}/\pi$ ratio is found to be lower by a factor of about 1.5. This deviation from thermal model expectations is still to be understood.

4 data tables

Transverse momentum distribution for positve and negative pions.

Transverse momentum distribution for positve and negative kaons.

Transverse momentum distribution for positve and negative protons.

More…