Inclusive Production of $D$ Mesons in $e^+ e^-$ Annihilation at 7-{GeV}

Rapidis, P.A. ; Feldman, G.J. ; Abrams, G.S. ; et al.
Phys.Lett.B 84 (1979) 507-510, 1979.
Inspire Record 133123 DOI 10.17182/hepdata.27331

Inclusive momentum and energy spectra of neutral and charged D-mesons produced in e + e − annihilation at energies near 7 GeV are presented. The slope of the energy spectrum is similar to the charged pion spectrum at the same energy. The inclusive cross section σ(e + e − → D or D + anything) at 7 GeV is 4.8±1.3 nb.

4 data tables

No description provided.

No description provided.

SCALING VARIABLE IS X(P=3,DEF=2*E(P=3)/SQRT(S)) > 0.54.

More…

Inclusive Production of $D$ and $K$ Mesons in $e^+ e^-$ Annihilation

Piccolo, M. ; Peruzzi, I. ; Rapidis, P.A. ; et al.
Phys.Lett.B 86 (1979) 220-224, 1979.
Inspire Record 141018 DOI 10.17182/hepdata.27301

We present measurements of the cross section for inclusive D and K meson production in e + e − annihilation in the center of mass energy range 3.6 to 5.8 GeV. D production accounts for most of the increase in the total cross section for hadron production in e + e − annihilation at energies above 4 GeV.

3 data tables

No description provided.

No description provided.

No description provided.


Inclusive $\gamma$ and $\pi^0$ Production in $e^+ e^-$ Annihilation

Scharre, D.L. ; Fong, A. ; Pun, T. ; et al.
Phys.Rev.Lett. 41 (1978) 1005, 1978.
Inspire Record 130859 DOI 10.17182/hepdata.20888

We have measured inclusive γ and π0 production in multiprong events produced by e+e− annihilation in the center-of-mass energy range 4.9 to 7.4 GeV. We find the π0 inclusive cross section to be consistent in shape and normalization with half the charged-π cross section between x=0.15 and 0.60, with an integrated inclusive cross-section ratio of σ(π0)|σ(π+)+σ(π−)|=0.47±0.10.

1 data table

NUMERICAL VALUES OF DATA FROM THIS EXPERIMENT HAVE NOT BEEN KEPT (M. L. PERL, PRIV COMM, 3 MAY 1979).


Inclusive Baryon Production in e+ e- Annihilation

Piccolo, M. ; Peruzzi, I. ; Luke, D. ; et al.
Phys.Rev.Lett. 39 (1977) 1503, 1977.
Inspire Record 121395 DOI 10.17182/hepdata.20965

The inclusive production of antiprotons and Λ's in e+e− annihilation has been measured as a function of the c.m. energy in the range 3.7-7.6 GeV. We find that the baryon cross section has a behavior different from the total hadronic production. Our results show a rapid rise in the ratio σp¯σμμ between 4.4 and 5 GeV, consistent with what would be expected from charmed baryon production. Λ¯ production is 10-15% of p¯ production at all energies.

1 data table

NOT INCLUDING SYSTEMATIC ERRORS.


Observation of a Resonance in e+ e- Annihilation Just Above Charm Threshold

Rapidis, Petros A. ; Gobbi, B. ; Luke, D. ; et al.
Phys.Rev.Lett. 39 (1977) 526, 1977.
Inspire Record 119979 DOI 10.17182/hepdata.20971

We observe a resonance in the total cross section for hadron production in e+e− annihilation at a mass of 3772±6 MeV/c2 having a total width of 28±5 MeV/c2 and a partial width to electron pairs of 370±90 eV/c2.

2 data tables

BEFORE ANY RADIATIVE CORRECTIONS.

AFTER APPLYING ALL RADIATIVE CORRECTIONS.


Study of D Mesons Produced in the Decay of the psi-prime-prime (3772)

Peruzzi, I. ; Piccolo, M. ; Feldman, G.J. ; et al.
Phys.Rev.Lett. 39 (1977) 1301, 1977.
Inspire Record 120878 DOI 10.17182/hepdata.21003

From a study of D mesons produced in the decay ψ(3772)→DD¯, we have determined the masses of the D0 and D+ mesons to be 1863.3±0.9 MeV/c2 and 1868.3±0.9 MeV/c2, respectively. Under the assumption that the ψ(3772) has a definite isospin and decays only to DD¯, the D0 branching fractions to K−π+, K¯0π+π−, and K−π+π−π+ are (2.2±0.6)%, (4.0 ± 1.3)%, and (3.2±1.1)% and the D+ branching fractions to K¯0π+ and K−π+π+ are (1.5±0.6)% and (3.9±1.0)%.

1 data table

AROUND PSI(3772)0 PEAK. UPPER BOUNDS EACH SIDE OF PEAK ARE TABULATED IN M. PICCOLO ET AL., PL 86B, 220 (1979).


Evidence for Direct $\gamma$ Production at Large $x$ in $\psi$ (3100) Decay

Ronan, M.T. ; Trippe, T.G. ; Barbaro-Galtieri, A. ; et al.
Phys.Rev.Lett. 44 (1980) 367, 1980.
Inspire Record 142946 DOI 10.17182/hepdata.20700

The inclusive γ and π0 momentum spectra from ψ(3100) decay have been measured in e+e− annihilation at SPEAR. When the γ spectrum is compared with that expected from π0 decay, an excess of high-momentum γ's is observed. This excess is compared with that predicted by quantum chromodynamics for the decay of the ψ into a γ and two gluons.

4 data tables

THE STATISTICAL AND SYSTEMATIC ERRORS ARE GIVEN SEPARATELY AS WELL AS COMBINED IN QUADRATURE FOR THE QUOTED TOTAL ERROR.

THE STATISTICAL AND SYSTEMATIC ERRORS ARE GIVEN SEPARATELY AS WELL AS COMBINED IN QUADRATURE FOR THE QUOTED TOTAL ERROR. SYSTEMATIC ERROR IS 17 PCT.

QUOTED ERRORS ARE STATISTICAL. SYSTEMATIC ERROR IS 20 PCT. ONLY HALF THE SUM OF THE PI+ AND PI- CROSS SECTIONS IS PLOTTED IN THE FIGURE IN THE JOURNAL.

More…

Measurement of the angular distribution of electrons from W ---> e neutrino decays observed in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 63 (2001) 072001, 2001.
Inspire Record 533572 DOI 10.17182/hepdata.41717

We present the first measurement of the electron angular distribution parameter alpha_2 in W to e nu events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the D0 detector during the 1994--1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1 +/- alpha_1 cos theta* + alpha_2 cos^2 theta*), where theta* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters alpha_1 and alpha_2 become functions of p_T^W, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement.

1 data table

Angular distributions of the emitted charged lepton is fitted to the formula d(sig)/d(pt**2)/dy/d(cos(theta*)) = const*(1 +- alpha_1*cos(theta*) + alpha_2*(cos(theta*))**2). The angle theta* is measured in the Collins-Soper frame. alpha_1 velues are calculated based on the measured PT(W) of each event. Possible variations of alpha_1 are treated as a source of systematic uncertainty.


Search for top squark pair production in the dielectron channel

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 57 (1998) 589-593, 1998.
Inspire Record 427311 DOI 10.17182/hepdata.41662

This report describes the first search for top squark pair production in the channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using 74.9 +- 8.9 pb~-1 of data collected using the D0 detector. A 95% confidence level upper limit on sigma*B is presented. The limit is above the theoretical expectation for sigma*B for this process, but does show the sensitivity of the current D0 data set to a particular topology for new physics.

1 data table

Data are extracted from the figure. Sigma*Br.


Probing BFKL dynamics in the dijet cross-section at large rapidity intervals in p anti-p collisions at S**(1/2) = 1800-GeV and 630-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 84 (2000) 5722-5727, 2000.
Inspire Record 511525 DOI 10.17182/hepdata.41510

Inclusive dijet production at large pseudorapidity intervals (delta_eta) between the two jets has been suggested as a regime for observing BFKL dynamics. We have measured the dijet cross section for large delta_eta in ppbar collisions at sqrt{s}=1800 and 630 GeV using the DO detector. The partonic cross section increases strongly with the size of delta_eta. The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of a_{BFKL}(20GeV)=1.65+/-0.07.

4 data tables

Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).

Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).

Z(P=3) and Z(P=4) are longitudinal momentum fractions of the proton and antiproton, carried by the two interacting partons: Z(P=3,4) = 2*ET(P=3,4)/SQRT(S)*EXP(+-ETARAP)*COSH(DELTA(ETARAP)/2), where ETARAP = (ETARAP(P=3)+ETARAP(P=4))/2,DELTA(ETARAP) = ABS(ETARAP(P=3)-ETARAP(P=4)).

More…