J/psi Production as a Function of Charged Particle Multiplicity in pp Collisions at sqrt{s} = 7 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 712 (2012) 165-175, 2012.
Inspire Record 1088833 DOI 10.17182/hepdata.38163

The ALICE collaboration reports the measurement of the inclusive J/psi yield as a function of charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV at the LHC. J/psi particles are detected for p_t > 0, in the rapidity interval |y| < 0.9 via decay into e+e-, and in the interval 2.5 < y < 4.0 via decay into mu+mu- pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN_{J/psi}/dy)/<dN_{J/psi}/dy> with (dN_{ch}/deta)/<dN_{ch}/deta> is observed in both rapidity ranges, where dN_{ch}/deta is measured within |eta| < 1 and p_t > 0. In the highest multiplicity interval with <dN_{ch}/deta(bin)> = 24.1, corresponding to four times the minimum bias multiplicity density, an enhancement relative to the minimum bias J/psi yield by a factor of about 5 at 2.5 < y < 4 (8 at |y| < 0.9) is observed.

2 data tables

The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-electron channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.

The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-muon channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.


Rapidity and transverse momentum dependence of inclusive J/psi production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 704 (2011) 442-455, 2011.
Inspire Record 897764 DOI 10.17182/hepdata.57452

The ALICE experiment at the LHC has studied inclusive J/$\psi$ production at central and forward rapidities in pp collisions at $\sqrt{s} = 7$ TeV. In this Letter, we report on the first results obtained detecting the J/$\psi$ through its dilepton decay into $e^+e^-$ and $\mu^+\mu^-$ pairs in the rapidity range |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero $p_{\rm T}$. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity $L_{\rm int}$ = 5.6 nb$^{-1}$ and the number of signal events is $N_{J/\psi}=352 \pm 32$ (stat.) $\pm$ 28 (syst.); the corresponding figures in the dimuon channel are $L_{\rm int}$ = 15.6 nb$^{-1}$ and $N_{J/\psi} = 1924 \pm 77$ (stat.) $\pm$ 144(syst.). The measured production cross sections are $\sigma_{J/\psi}$ (|y|<0.9) = 12.4 $\pm$ 1.1 (stat.) $\pm$ 1.8 (syst.) + 1.8 -2.7 (syst.pol.) $\mu$b and $\sigma_{J/\psi}$ (2.5<y<4) = 6.31 $\pm$ 0.25 (stat.) $\pm$ 0.76 (syst.) +0.95 -1.96 (syst.pol.) $\mu$b. The differential cross sections, in transverse momentum and rapidity, of the J/$\psi$ were also measured.

5 data tables

Double differential J/PSI cross section from the di-electron channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors considering. a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.

Differential J/PSI cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering a +1 polarization in the Collins-Soper frame, a -1 polarization in the Collins-Soper frame, a +1 polarization in the Helicity frame and a -1 polarization in the Helicity frame, respectively.

Differential J/PSI cross section from the di-electron and di-muon channel as a function of rapidity, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one. The last four columns are the errors (in MUB/GEV) considering. Data in the first point of this table updated from the erratum.

More…

Light vector meson production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, B. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 710 (2012) 557-568, 2012.
Inspire Record 1080945 DOI 10.17182/hepdata.58629

The ALICE experiment has measured low-mass dimuon production in pp collisions at $\sqrt{s} = 7$ TeV in the dimuon rapidity region 2.5<y<4. The observed dimuon mass spectrum is described as a superposition of resonance decays ($\eta$, $\rho$, $\omega$, $\eta^{'}$, $\phi$) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for $\omega$ and $\phi$ are $\sigma_\omega$ (1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4) = 5.28 $\pm$ 0.54 (stat) $\pm$ 0.50 (syst) mb and $\sigma_\phi$(1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4)=0.940 $\pm$ 0.084 (stat) $\pm$ 0.078 (syst) mb. The differential cross sections $d^2\sigma/dy dp_{\rm T}$ are extracted as a function of $p_{\rm T}$ for $\omega$ and $\phi$. The ratio between the $\rho$ and $\omega$ cross section is obtained. Results for the $\phi$ are compared with other measurements at the same energy and with predictions by models.

5 data tables

Differential phi cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Differential omega cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Total phi cross section from the di-muon data. The first error is statistical, the second is a systematic error.

More…

Version 2
Measurement of charm production at central rapidity in proton-proton collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, B. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
JHEP 01 (2012) 128, 2012.
Inspire Record 944757 DOI 10.17182/hepdata.58524

The $p_{\rm T}$-differential inclusive production cross sections of the prompt charmed mesons $D^0$, $D^+$, and $D^{*+}$ in the rapidity range |y|<0.5 were measured in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC using the ALICE detector. Reconstructing the decays $D^0\rightarrow K^-\pi^+$, $D^+\rightarrow K^-\pi^+\pi^+$, $D^{*+}\rightarrow D^0\pi^+$, and their charge conjugates, about 8,400 $D^0$, 2,900 $D^+$, and 2,600 $D^{*+}$ mesons with 1<$p_{\rm T}$<24 GeV/$c$ were counted, after selection cuts, in a data sample of 3.14x10$^8$ events collected with a minimum-bias trigger (integrated luminosity $L_{\rm int}$ = 5/nb). The results are described within uncertainties by predictions based on perturbative QCD.

8 data tables

Differential cross section for prompt D0 production.

Differential cross section for prompt D0 production.

Differential cross section for prompt D+ production.

More…

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Study of the inclusive production of charged pions, kaons, and protons in pp collisions at sqrt(s) = 0.9, 2.76, and 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2164, 2012.
Inspire Record 1123117 DOI 10.17182/hepdata.59366

Spectra of identified charged hadrons are measured in pp collisions at the LHC for sqrt(s) = 0.9, 2.76, and 7 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and for rapidities abs(y) < 1 are identified via their energy loss in the CMS silicon tracker. The average pt increases rapidly with the mass of the hadron and the event charged-particle multiplicity, independently of the center-of-mass energy. The fully corrected pt spectra and integrated yields are compared to various tunes of the PYTHIA6 and PYTHIA8 event generators.

80 data tables

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 900 GeV.

Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) and at a centre-of-mass energy of 900 GeV.

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) and at a centre-of-mass energy of 2760 GeV.

More…

Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 2216, 2012.
Inspire Record 1102908 DOI 10.17182/hepdata.68066

A study of dijet production in proton-proton collisions was performed at sqrt(s) = 7 TeV for jets with pt > 35 GeV and abs(y) < 4.7 using data collected with the CMS detector at the LHC in 2010. Events with at least one pair of jets are denoted as 'inclusive'. Events with exactly one pair of jets are called 'exclusive'. The ratio of the cross section of all pairwise combinations of jets to the exclusive dijet cross section as a function of the rapidity difference between jets abs(Delta(y)) is measured for the first time up to abs(Delta(y)) = 9.2. The ratio of the cross section for the pair consisting of the most forward and the most backward jet from the inclusive sample to the exclusive dijet cross section is also presented. The predictions of the Monte Carlo event generators PYTHIA6 and PYTHIA8 agree with the measurements. In both ratios the HERWIG++ generator exhibits a more pronounced rise versus abs(Delta(y)) than observed in the data. The BFKL-motivated generators CASCADE and HEJ+ARIADNE predict for these ratios a significantly stronger rise than observed.

2 data tables

Inclusive to exclusive dijet production ratio.

Mueller-Navelet to exclusive dijet production ratio.


Measurement of the ratio of inclusive jet cross sections using the anti-kt algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 072006, 2014.
Inspire Record 1298810 DOI 10.17182/hepdata.68020

Measurements of the inclusive jet cross section with the anti-kt clustering algorithm are presented for two radius parameters, R=0.5 and 0.7. They are based on data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to parton showers describe the data best.

18 data tables

Inclusive Jet cross section with R = 0.5 in the rapidity bin 0 < |y| < 0.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.

Inclusive Jet cross section with R = 0.5 in the rapidity bin 0.5 < |y| < 1. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.

Inclusive Jet cross section with R = 0.5 in the rapidity bin 1 < |y| < 1.5. The total uncorrelated uncertainty includes statistical one and systematic uncorrelated. The total systematic uncertainty includes all other sources, especially the luminosity uncertainty of 2.2%. The total error can be obtained as a quadratic sum of uncorrelated and correlated one. The NP correction can be used to scale theory prediction to compare to data at particle level.

More…

Measurement of J/psi and psi(2S) prompt double-differential cross sections in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 191802, 2015.
Inspire Record 1345023 DOI 10.17182/hepdata.66886

The double-differential cross sections of promptly produced J/psi and psi(2S) mesons are measured in pp collisions at sqrt(s) = 7 TeV, as a function of transverse momentum pt and absolute rapidity abs(y). The analysis uses J/psi and psi(2S) dimuon samples collected by CMS, corresponding to integrated luminosities of 4.55 and 4.90 inverse femtobarns, respectively. The results are based on a two-dimensional analysis of the dimuon invariant mass and decay length, and extend to pt = 120 and 100 GeV for the J/psi and psi(2S), respectively, when integrated over the interval abs(y) < 1.2. The ratio of the psi(2S) to J/psi cross sections is also reported for abs(y) < 1.2, over the range 10 < pt < 100 GeV. These are the highest pt values for which the cross sections and ratio have been measured.

5 data tables

J/psi double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

psi(2S) double-differential cross section times branching fraction assuming unpolarized production as a function of pT and y for 0.0 < |y| < 0.3, 0.3 < |y| < 0.6, 0.6 < |y| < 0.9 and 0.9 < |y| < 1.2.

J/psi double-differential cross section times branching fraction and the corresponding scaling factors to obtain the cross sections for different polarization scenarios (azimuthal polarization parameter in the center of mass helicity frame lambda_theta^HX = +1, -1, +0.1) as a function of pT for |y| < 1.2.

More…

Measurements of differential jet cross sections in proton-proton collisions at sqrt(s)=7 TeV with the CMS detector

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 87 (2013) 112002, 2013.
Inspire Record 1208923 DOI 10.17182/hepdata.66887

Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at $\sqrt{s}$ = 7 TeV, corresponding to 5.0 inverse femtobarns of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed up to rapidity 2.5, transverse momentum 2 TeV, and dijet invariant mass 5 TeV, using the anti-k$_t$ clustering algorithm with distance parameter R = 0.7. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using five sets of parton distribution functions.

10 data tables

Inclusive Jet Cross Section for |rapidity| < 0.5 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 2.2%.

Inclusive Jet Cross Section for |rapidity| 0.5 TO 1.0 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 2.2%.

Inclusive Jet Cross Section for |rapidity| 1.0 TO 1.5 as a function of the jet transverse momentum. The (sys) error is the total systematic error, including the luminosity uncertainty of 2.2%.

More…