Measurement of the effective b quark fragmentation function at the Z resonance

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 357 (1995) 699-714, 1995.
Inspire Record 398319 DOI 10.17182/hepdata.48137

Using a sample of about 1.46 million hadronic Z decays collected between 1991 and 1993 with the ALEPH detector at LEP, the energy distribution of the B 0 and B ± mesons produced at the Z resonance is measured by reconstructing semileptonic decays B → ℓ ν ℓ D(X) or B → ℓν ℓ D ∗+ (X) . The charmed mesons are reconstructed through the decay modes D 0 → K − π + , D 0 → K − π + π − π + , D + → K − π + π + and D ∗+ → D 0 π + . The neutrino energy is estimated from the missing energy in the lepton hemisphere. Accounting for B ∗ and B ∗∗ production, the shape of the scaled energy distribution x E (b) for mesons containing a b quark is compared to the predictions of different fragmentation models. The mean value of x E (b) is found to be 〈 x E (b) 〉 = 0.715 ± 0.007(stat) ± 0.013(syst).

1 data table

SIG/SIG(C=ALL-X-INTERVAL) is fraction of events in bin. Third and fourth systematic errors are due to variation of D** and B** contributions respectively (model dependent, see text).


First measurement of the quark to photon fragmentation function

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 69 (1996) 365-378, 1996.
Inspire Record 398193 DOI 10.17182/hepdata.12261

Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.

16 data tables

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

More…

Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

2 data tables

The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.

The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).


FRAGMENTATION INTO STRANGE PARTICLES IN HIGH-ENERGY NEUTRINO P, neutrino N, ANTI-NEUTRINO P AND ANTI-NEUTRINO N INTERACTIONS

The AMSTERDAM-BERGEN-BOLOGNA-PADUA-PISA-SACLAY-TURIN collaboration Allasia, D. ; Angelini, C. ; Baldini, A. ; et al.
Phys.Lett.B 154 (1985) 231-235, 1985.
Inspire Record 218756 DOI 10.17182/hepdata.30415

The fragmentation of the hadronic system into Λ, Σ(1385), K ) and K ∗ (892) in deep-inelastic charged-current interactions of high energy neutrinos and antineutrinos with proton and neutron is analyzed. The results obtained for the production of these particles from the various initial states are compared with each other and with the predictions of the Lund fragmentation model. This comparison shows that a spectator diquark does not fragment as a whole in a fraction of the interactions. The role of the sea quarks in the baryon formation process is underlined. Strange vector and pseudoscalar mesons are likely to be produced at similar rates.

3 data tables

No description provided.

SIG(C=LAMBDA) denotes the inclusive LAMBDA production in the same reaction.

SIG(C=KS) denotes the inclusive KS production in the same reaction.


Resonance Decomposition of the $D^*$0 (2420) Through a Decay Angular Analysis

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Phys.Lett.B 232 (1989) 398-404, 1989.
Inspire Record 280943 DOI 10.17182/hepdata.45198

Using data collected with the ARGUS detector, we have performed a decay angular analysis of the enhancement, previously known as the D ∗ (2420), seen in the final state D ∗ (2010) + π − . We thereby exhibit that the observed broad structure is actually due to two relatively narrow resonances, one of which is identified as the D ∗ (2459) 0 , while the massof the other is measured to be (2414±2±5) MeV/ c 2 . The results of the analysis are in good agreement with the interpretation of the two states as L =1 D mesons of spin-parities 2 + and 1 + respectively.

2 data tables

The cross sections times branching ratio.

It is assumed that decays D PION and D* PION saturate the total widths.


Search for Fractionally Charged Particles Produced in $e^+ e^-$ Annihilation

The ARGUS collaboration Albrecht, H. ; Binder, U. ; Harder, G. ; et al.
Phys.Lett.B 156 (1985) 134-138, 1985.
Inspire Record 214357 DOI 10.17182/hepdata.45210

A search has been made for particles with charge Q = 1 3 , Q = 2 3 and Q = 4 3 produced in e + e − annihilation using the ARGUS detector at the e + e − storage ring DORIS, operating at a centre of mass energy around 10 GeV. No candidate events were found in 84.5 pb −1 of collected data. Upper limits are established for the cross section for the production of fractionally charged particles with masses up to 4 GeV c 2 , improving on previously obtained limits.

1 data table

Two different models (I and II) are considered (see text).


Measurement of the Relative Total Hadronic Cross-section R at {PETRA}

The Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing collaboration Barber, D. ; Becker, U. ; Boehm, A. ; et al.
Phys.Rev.Lett. 42 (1979) 1113, 1979.
Inspire Record 140059 DOI 10.17182/hepdata.3235

We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.

2 data tables

No description provided.

No description provided.


D*+- production in 350-GeV/c pi- N interactions.

The BEATRICE collaboration Adinolfi, M. ; Alexandrov, Y. ; Angelini, C. ; et al.
Nucl.Phys.B 547 (1999) 3-18, 1999.
Inspire Record 496156 DOI 10.17182/hepdata.49177

We report measurements of D ∗± production in interactions between 350 GeV/ c π − particles and nuclei. Reconstruction of the decay D ∗+ → D 0 π + and charge conugate, with D 0 identified via its decays to K − π + and K − π − π + π + , has allowed isolation of a sample of 611 ± 28 D ∗± mesons, produced at positive x F . Assuming a linear A-dependence, the cross-section per nucleon in the region x F > 0 is measured to be 1.41 ± 0.10 ± 0.11 μ b for D ∗+ and 1.84 ± 0.12 ± 0.15 μ b for D ∗− . We present measurements of differential cross-sections with respect to x F and P t 2 , and compare data for D ∗± (vector-meson) production with data for production of charmed pseudoscalar mesons.

3 data tables

No description provided.

Data on D0, DBAR0, D+, and D- meson production are taken from previous publication of this collaboration (see NP B495, 3).

No description provided.


Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Production of upsilon(1S) mesons from chi(b) decays in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 84 (2000) 2094-2099, 2000.
Inspire Record 508395 DOI 10.17182/hepdata.50106

We have reconstructed the radiative decays $\chi_{b}(1P) \to \Upsilon(1S) \gamma $ and $\chi_{b}(2P) \to \Upsilon(1S) \gamma $ in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p^{\Upsilon}_{T}>8.0$ GeV/$c$, the fractions that come from $\chi_{b}(1P)$ and $\chi_{b}(2P)$ decays are $(27.1\pm6.9(stat)\pm4.4(sys))%$ and $(10.5\pm4.4(stat)\pm1.4(sys))%$, respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $(50.9\pm8.2(stat)\pm9.0(sys))%$.

1 data table

No description provided.