Z boson pair production in e+ e- collisions at s**(1/2) = 183-GeV and 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Phys.Lett.B 476 (2000) 256-272, 2000.
Inspire Record 524845 DOI 10.17182/hepdata.50015

A study of Z boson pair production in e+e- annihilation at center-of-mass energies near 183 GeV and 189 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nu nubar), quark and lepton pairs, (q qbar l+l-, q qbar nu nubar) and the all-hadronic final state (q qbar q qbar) are considered. In all states with at least one Z boson decaying hadronically, q qbar and b bbar final states are considered separately using lifetime and event-shape tags, thereby improving the cross-section measurement. At sqrt(s) = 189 GeV the Z-pair cross section was measured to be 0.80 (+0.14-0.13, stat.) (+0.06-0.05, syst.) pb, consistent with the Standard Model prediction. At sqrt(s) = 183 GeV the 95% C.L. upper limit is 0.55 pb. Limits on anomalous ZZgamma and ZZZ couplings are derived.

1 data table

Measured cross sections for Z0 pair production.


W+ W- production cross section and W branching fractions in e+ e- collisions at 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Phys.Lett.B 493 (2000) 249-265, 2000.
Inspire Record 533110 DOI 10.17182/hepdata.49910

From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.

2 data tables

Total W+ W- pair production cross section.

Cross sections for the individual decay modes of the W+ W-.


W+ W- production and triple gauge boson couplings at LEP energies up to 183-GeV

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 8 (1999) 191-215, 1999.
Inspire Record 479051 DOI 10.17182/hepdata.49338

A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.

2 data tables

Total W+ W- cross section measurement. The DSYS error corresponds to the total systematic error.

Cross section for W+ W- production in different decay channels. The DSYS error corresponds to the total systematic error.


Upsilon production in U+U collisions at 193 GeV with the STAR experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 064904, 2016.
Inspire Record 1482939 DOI 10.17182/hepdata.98624

We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

5 data tables

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to different models [36–38], described in the text. The 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

More…

Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

6 data tables

Average charged particle multiplicity densities for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. The solid curves are the Toward region. The sparse dashed curves are the Away region. The dense dashed curves are the Transverse region.

Transverse region average charged particle densities for pT>0.2 GeV/c (open symbols) and pT>0.5 GeV/c (filled symbols). Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune.

Charged particle <pT> for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. Note the three curves overlap for the Transverse region calculations.

More…

Two-particle correlations on transverse rapidity in Au+Au collisions at $\sqrt {s_{NN}}=200$ GeV at STAR

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 106 (2022) 044906, 2022.
Inspire Record 2071694 DOI 10.17182/hepdata.129290

Two-particle correlation measurements projected onto two-dimensional, transverse rapidity coordinates ($y_{T1},y_{T2}$), allow access to dynamical properties of the QCD medium produced in relativistic heavy-ion collisions that angular correlation measurements are not sensitive to. We report non-identified charged-particle correlations for Au + Au minimum-bias collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV taken by the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). Correlations are presented as 2D functions of transverse rapidity for like-sign, unlike-sign and all charged-particle pairs, as well as for particle pairs whose relative azimuthal angles lie on the near-side, the away-side, or at all relative azimuth. The correlations are constructed using charged particles with transverse momentum $p_T \geq 0.15$ GeV/$c$, pseudorapidity from $-$1 to 1, and azimuthal angles from $-\pi$ to $\pi$. The significant correlation structures that are observed evolve smoothly with collision centrality. The major correlation features include a saddle shape plus a broad peak with maximum near $y_T \approx 3$, corresponding to $p_T \approx$ 1.5 GeV/$c$. The broad peak is observed in both like- and unlike-sign charge combinations and in near- and away-side relative azimuthal angles. The all-charge, all-azimuth correlation measurements are compared with the theoretical predictions of {\sc hijing} and {\sc epos}. The results indicate that the correlations for peripheral to mid-central collisions can be approximately described as a superposition of nucleon + nucleon collisions with minimal effects from the QCD medium. Strong medium effects are indicated in mid- to most-central collisions.

137 data tables

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 84-93%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 74-84%.

Two-dimensional correlations of charged-hadrons, all-CI, projected onto (y_t1, y_t2), in centrality bin 64-74%.

More…

Two Particle Correlations and Regions of Proton Emittance Regions in $p$ Ta Interactions at $p=10$-{GeV}/$c$

Agakishiev, G.N. ; Armutliisky, D.D. ; Akhababian, N.O. ; et al.
Sov.J.Nucl.Phys. 47 (1988) 822, 1988.
Inspire Record 251053 DOI 10.17182/hepdata.9905

None

3 data tables

No description provided.

No description provided.

BACKGROUND DISTRIBUTION WAS OBTAINED BY USING PROTONS FROM DIFFERENT EVENTS.


Transverse spin-dependent azimuthal correlations of charged pion pairs measured in p$^\uparrow$+p collisions at $\sqrt{s}$ = 500 GeV

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Lett.B 780 (2018) 332-339, 2018.
Inspire Record 1632938 DOI 10.17182/hepdata.105868

The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized $p^\uparrow+p$ collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons. This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb$^{-1}$ integrated luminosity of $p^\uparrow+p$ collisions at $\sqrt{s}=500$ GeV, an increase of more than a factor of ten compared to our previous measurement at $\sqrt{s}=200$ GeV. Non-zero asymmetries sensitive to transversity are observed at a $Q^2$ of several hundred GeV and are found to be consistent with the former measurement and a model calculation. %we observe consistent with the former measurement are observed.} We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.

15 data tables

Squared 4-momentum transfer $Q^2$ vs x coverage of STAR .

$A_{UT}$ as a function of $\eta$ for $<p_{T}>$ = 13 GeV/c and $<M_{inv}>$ = 1 GeV/($c^2$) (Upper panel of the fig. 3). Kinematic variables $<x>$, $<z>$ as a function of $\eta$ for $<p_{T}>$ = 13 GeV/c and $<M_{inv}>$ = 1 GeV/($c^2$) (Lower panel of the fig. 3). In addition to statistical uncertainties, systematic uncertainties originating from PID and trigger bias systematic uncertainties are also mentioned for $A_{UT}$.

$A_{UT}$ as a function of $<M_{inv}>$ for pT bin $<p_{T}>$ = 4 GeV/c for $\eta > 0$ and $\eta < 0$. In addition to statistical uncertainties, systematic uncertainties originating from PID and trigger bias systematic uncertainties are also mentioned.

More…

Transverse spin transfer to $\Lambda$ and $\bar{\Lambda}$ hyperons in polarized proton-proton collisions at $\sqrt{s}=200\,\mathrm{GeV}$

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 091103, 2018.
Inspire Record 1691271 DOI 10.17182/hepdata.105628

The transverse spin transfer from polarized protons to $\Lambda$ and $\bar{\Lambda}$ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to $\Lambda$ and $\bar{\Lambda}$ along the polarization direction of the fragmenting quark, $D_\mathrm{TT}$, in transversely polarized proton-proton collisions at $\sqrt{s}=200\,\mathrm{GeV}$ with the STAR detector at RHIC. The data correspond to an integrated luminosity of $18\,\mathrm{pb}^{-1}$ and cover the pseudorapidity range $\left|\eta\right| < 1.2$ and transverse momenta $p_{\mathrm{T}}$ up to $8\,\mathrm{GeV}/c$. The dependence on $p_\mathrm{T}$ and $\eta$ are presented. The $D_\mathrm{TT}$ results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.

7 data tables

'Transverse spin transfer of $\Lambda$ in transversely polarized proton-proton collisions at 200 GeV.'

'Transverse spin transfer of $\bar{\Lambda}$ in transversely polarized proton-proton collisions at 200 GeV.'

'spin asymmetry $\delta_{TT}$ for the control sample of $K_S^0$ meson.'

More…

Transverse Single-Spin Asymmetry and Cross-Section for pi0 and eta Mesons at Large Feynman-x in Polarized p+p Collisions at sqrt(s)=200 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.D 86 (2012) 051101, 2012.
Inspire Record 1116643 DOI 10.17182/hepdata.101343

Measurements of the differential cross-section and the transverse single-spin asymmetry, A_N, vs. x_F for pi0 and eta mesons are reported for 0.4 < x_F < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb^{-1} was analyzed, which was recorded during p+p collisions at sqrt{s} = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross-section for pi0 is consistent with a perturbative QCD prediction, and the eta/pi0 cross-section ratio agrees with previous mid-rapidity measurements. For 0.55 < x_F < 0.75, A_N for eta (0.210 +- 0.056) is 2.2 standard deviations larger than A_N for pi0 (0.081 +- 0.016).

4 data tables

(c) $A_N$ vs. $M_{\gamma\gamma}$ for the above mass distribution. The error bars are statistical uncertainties only.

Differential production cross-sections for $\pi^0$ and $\eta$ at average pseudorapidity of 3.68. Also shown are the previously published STAR results for similar kinematics [21] and a NLO pQCD calculation of the π0 cross-section [32]. The error band represents the uncertainty in the calculation due to scale variations.

The $\eta$ to $\pi^0$ cross-section ratio is shown in the bottom panel. The error bars indicate the total statistical and systematic uncertainties.

More…