Photoproduction of the LAMBDA(c) charmed baryon

The NA14/2 collaboration Alvarez, M.P. ; Barate, R. ; Bloch, D. ; et al.
Phys.Lett.B 246 (1990) 256-260, 1990.
Inspire Record 296476 DOI 10.17182/hepdata.29677

In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29±8 Λ c ( Λ c ) charmed-baryon and antibaryon decays in the pK − π + ( p K + π − ) final state. Quasi two-body final states do not contribite significantly to this channel. The mass of the Λ c was measured to be 2281.7±2.7±2.6 MeV/ c 2 and its lifetime 0.18±0.03±0.03 ps. The ratio of Λ c D production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a Λ c branching fraction in pK π as high as 5%.

1 data table

Result extrapolated to all lambda/c energies has large model dependent uncertainties.


Study of charm photoproduction mechanisms

The NA14/2 collaboration Alvarez, M.P. ; Barate, R. ; Bloch, D. ; et al.
Z.Phys.C 60 (1993) 53-62, 1993.
Inspire Record 333271 DOI 10.17182/hepdata.14331

This paper presents results on charm photoproduction in the energy interval 40 to 160 GeV, obtained from the high-statistics charm samples of the NA 14/2 experiment at CERN. We measure the charm cross-section, the distributions inxF andp2T and various production ratios and charge asymmetries. The total non-diffractive open-charm cross-section per nucleon is measured to be\(\sigma _{(\gamma N \to c\bar cX)} \) at 〈Eγ〉 =100 GeV. We discuss the photoproduction of charm in terms of theoretical and phenomenological models. We compare the measuredp2T andxF distributions with first-order QCD calculations of photon-gluon fusion and obtain a value for the charm-quark mass ofmc=1.5+0.2−0.1GeV/c2.

10 data tables

D0 cross section assuming branching ratio of D0 --> K- PI+ of 3.65 +- 0.21 PCT.

D+(-) cross section assuming branching ratio of D+ --> K- PI+ PI+ of 8.0 +0.8,-0.7 PCT.

Total non diffractive open charm production cross section allowing for contributions for other charmed particles (D/S and LAMBDA/C). Comparison of data with first order QCD leads to a predicted charm quark mass of 1.5 +0.2,-0.1 GeV.

More…

Measurement of $J/\psi$ and $\psi^\prime$ Real Photoproduction on $^{6}$Li at a Mean Energy of 90-{GeV}

The NA14 collaboration Barate, R. ; Bareyre, P. ; Bloch, D. ; et al.
Z.Phys.C 33 (1987) 505, 1987.
Inspire Record 235579 DOI 10.17182/hepdata.15814

Inelastic and elasticJ/ψ (3097) photoproduction on Li6 are measured at a mean γ energy of 90 GeV in an open spectrometer. TheJ/ψ are identified by their decays intoμ+μ− ore+e−. A signal of ψ′(3685) intoμ+μ− andJ/ψπ+π− is also seen. The inelastic cross-section withZ=Eψ/Eγ<0.9 is compared in shape and magnitude with the colour singlet model of photon-gluon fusion.

2 data tables

DIMUON TRIGGER, INELASTIC MEANS Z < 0.9.

ELECTRON TRIGGER, INELASTIC MEANS Z < 0.9.


A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

2 data tables

Corrected jet rates.

Second systematic error is theoretical.


A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

3 data tables

Fully corrected cross sections.

Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.

Effective weak mixing angle.


Photon Events with Missing Energy at sqrt(s) = 183 to 189 GeV

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 17 (2000) 53-65, 2000.
Inspire Record 537913 DOI 10.17182/hepdata.32093

The production of single photons has been studied in the reaction e+e- -> gamma + invisible particles at centre-of-mass energies of 183 GeV and 189 GeV. A previously published analysis of events with multi-photon final states accompanied by missing energy has been updated with 189 GeV data. The data were collected with the DELPHI detector and correspond to integrated luminosities of about 51 pb^{-1} and 158 pb^{-1} at the two energies. The number of light neutrino families is measured to be 2.84 +/- 0.15(stat) +/- 0.14(syst). The absence of an excess of events beyond that expected from Standard Model processes is used to set limits on new physics as described by supersymmetric and composite models. A limit on the gravitational scale is also determined.

2 data tables

No description provided.

Combined result.


Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

18 data tables

Cross section from analysis I based on energy of charged particles. Additional 1.0 pct normalisation uncertainty.

Cross section from analysis II based on calorimeter energies. Additional 1.1 pct normalisation uncertainty.

Cross sections within the polar angle range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error 1.2 pct not included.

More…

Measurement of inclusive production of light meson resonances in hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 298 (1993) 236-246, 1993.
Inspire Record 342800 DOI 10.17182/hepdata.29001

A study of inclusive production of the meson resonances ρ 0 , K ∗0 (892), ƒ 0 (975) and ƒ 2 (1270) in hadronic decays of the Z 0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ 0 0.64 ± 0.24 for the K ∗0 (892), 0.10 ± 0.04 for the ƒ 0 (975) in the momentum range p > 0.05 p beam ( x p > 0.05) and 0.11 ± 0.05 for the ƒ 2 (1270) for x p > 0.1 . These values and the corresponding differential cross sections ( 1 σ hadr ) d σ d x p for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The ƒ 2 (1270) production is overestimated by HERWIG but its x p -shape is correctly reproduced. The measured ratios of the production cross sections σ(ƒ 2 (1270)) σ(ρ 0 ) = 0.22 ± 0.08 and σ(ƒ 2 (1270)) σ(ƒ 0 (975)) = 3 −1 +7 for x p > 0.1 are consistent with the results obtained in hadronic reactions.

10 data tables

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

More…

The reaction e+ e- ---> gamma gamma (gamma) at Z0 energies

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 268 (1991) 296-304, 1991.
Inspire Record 317825 DOI 10.17182/hepdata.29352

The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.

2 data tables

Radiative effects are subtracted.

Radiative effects subtracted.


Search for new phenomena using single photon events in the DELPHI detector at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 74 (1997) 577-586, 1997.
Inspire Record 415746 DOI 10.17182/hepdata.41128

Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).

3 data tables

No description provided.

Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.

Here UNSPEC is invisible particle.