Photoproduction of Charged Pi Mesons from Hydrogen and Deuterium

Jenkins, T.L. ; Luckey, D. ; Palfrey, T.R. ; et al.
Phys.Rev. 95 (1954) 179-184, 1954.
Inspire Record 944932 DOI 10.17182/hepdata.26426

Photoproduction cross sections of charged pi mesons from hydrogen and deuterium have been measured as a function of meson angle at gamma-ray energies of 200, 235, and 265 Mev. The angular range extends from 30° to 180° in the laboratory system. Absolute cross sections have been determined. A least-squares fit of the measured cross sections has been made to the expression A+Bcosθ+Csin2θ, which assumes only S and P wave scattering. The coefficients so determined are qualitatively consistent with electric and magnetic dipole absorption together with the assumption of a resonant state of angular momentum 32 and of energy close to 300 Mev. Comparison with neutral meson production indicates some direct charged meson production in the P state.

2 data tables

No description provided.

No description provided.


Proton-proton interactions at 5.3 BeV

Wright, Robert W. ; Saphir, George ; Powell, Wilson M. ; et al.
Phys.Rev. 100 (1955) 1802, 1955.
Inspire Record 1188071 DOI 10.17182/hepdata.26941

None

1 data table

No description provided.


Photoproduction of pi+ Mesons from Hydrogen in the Region 350-900 Mev

Heinberg, M. ; McClelland, W.M. ; Turkot, F. ; et al.
Phys.Rev. 110 (1958) 1211-1212, 1958.
Inspire Record 46812 DOI 10.17182/hepdata.26860

None

1 data table

No description provided.


Electromagnetic Properties of the Proton and Neutron

Olson, D.N. ; Schopper, H.F. ; Wilson, R.R. ;
Phys.Rev.Lett. 6 (1961) 286-290, 1961.
Inspire Record 944908 DOI 10.17182/hepdata.20172

None

3 data tables

No description provided.

No description provided.

No description provided.


Scattering of Bev Electrons by Hydrogen and Deuterium

Littauer, R.M. ; Schopper, H.F. ; Wilson, R.R. ;
Phys.Rev.Lett. 7 (1961) 141-143, 1961.
Inspire Record 47833 DOI 10.17182/hepdata.19791

None

6 data tables

No description provided.

No description provided.

No description provided.

More…

Multiple Meson Production in Proton-Proton Collisions at 2.85 Bev

Hart, E.L. ; Louttit, R.I. ; Luers, D. ; et al.
Phys.Rev. 126 (1962) 747-756, 1962.
Inspire Record 47769 DOI 10.17182/hepdata.26782

Measurements have been made on 753 four-prong events obtained by exposing the Brookhaven National Laboratory 20-in. liquid hydrogen bubble chamber to 2.85-Bev protons. The partial cross sections observed for multiple meson production reactions are: pp+−(p+p→p+p+π++π−), 2.67±0.13; pn++−, 1.15±0.09; pp+−0, 0.74±0.07; d++−, 0.06±0.02; four or more meson production, 0.04±0.02, all in mb. Production of two mesons appears to occur mainly in peripheral collisions with relatively little momentum transfer. In cases of three-meson production, however, the protons are typically deflected at large angles and are more strongly degraded in energy. The 32, 32 pion-nucleon resonance dominates the interaction; there is some indication that one or both of the T=12, pion-nucleon resonances also play a part. The recently discovered resonance in a T=0, three-pion state appears to be present in the pp+−0 reaction. Results are compared with the predictions of the isobaric nucleon model of Sternheimer and Lindenbaum, and with the statistical model of Cerulus and Hagedorn. The cross section for the reaction π0+p→π++π−+p is derived using an expression from the one-pion exchange model of Drell.

1 data table

No description provided.


ELECTRON - PROTON SCATTERING AT LOW MOMENTUM ENERGIES

Lehmann, P. ; Taylor, R.E. ; Wilson, Richard ;
Phys.Rev. 126 (1962) 1183, 1962.
Inspire Record 16521 DOI 10.17182/hepdata.26811

We have measured the electron-proton scattering cross section at 248.9 Mev, 104.81°; 209.6 Mev, 149.75°; and 139.3 Mev, 104.19°. We find the following values: F1=0.767±0.025, F2=0.707±0.028, and F1F2=1.085±0.025 at −q2=2.98 f−2. F=0.902±0.011 at −q2=1.05 f−2. The last result agrees with previous measurements. The others are new contributions.

2 data tables

No description provided.

No description provided.


Electron-Proton Scattering at High-Momentum Transfer

Berkelman, K. ; Feldman, M. ; Littauer, R.M. ; et al.
Phys.Rev. 130 (1963) 2061-2068, 1963.
Inspire Record 46839 DOI 10.17182/hepdata.26788

The elastic electron-proton scattering cross section has been measured at laboratory angles between 90° and 144° and for values of the four-momentum transfer squared between 25 and 45 F−2 (incident electron laboratory energies from 830 to 1360 MeV). Both the scattered electrons and the recoil protons were momentum analyzed and counted in coincidence, making possible background-free measurements down to cross sections of the order of 10−35 cm2/sr. The data are consistent with the Rosenbluth formula, and the resulting form factors tie on well with previous measurements at lower momentum transfer, continuing the established trend.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Electron-Proton Scattering at High Momentum Transfers

Chen, K.W. ; Cone, A.A. ; Dunning, J.R. ; et al.
Phys.Rev.Lett. 11 (1963) 561-564, 1963.
Inspire Record 945163 DOI 10.17182/hepdata.21832

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Proton Electromagnetic Form Factors at High Momentum Transfers

Chen, K.W. ; Dunning, J.R. ; Cone, A.A. ; et al.
Phys.Rev. 141 (1966) 1267-1285, 1966.
Inspire Record 50783 DOI 10.17182/hepdata.26655

Elastic electron-proton scattering cross sections have been measured using the internal beam of the 6-BeV Cambridge Electron Accelerator at laboratory scattering angles between 31° and 90° for values of the four-momentum transfer squared ranging from q2=0.389 to 6.81 (BeV/c)2 (q2=10 to 175F−2). Incident electron energies ranged from 1.0 to 6.0 BeV. Scattered electrons from an internal liquid-hydrogen target were momentum-analyzed using a single quadrupole spectrometer capable of momentum analysis up to 3.0 BeV/c. Čerenkov and shower counters were used to help reject pion and low-energy background. The cross sections presented are absolute cross sections with experimental errors ranging from 6.8% to 20%. Separation of proton electromagnetic form factors have been made for all but the two highest momentum transfer points, using the Rosenbluth formula. Both form factors, GEp and GMp, were observed to continue to decrease as the momentum transfer increases. An upper limit to the possible asymptotic values of the proton electromagnetic form factors has been established.

9 data tables

No description provided.

No description provided.

No description provided.

More…