Isospin invariance in the reaction n p ---> pi0 d

Wilson, S.S. ; Longo, M.J. ; Young, K.K. ; et al.
Nucl.Phys.B 33 (1971) 253-280, 1971.
Inspire Record 68508 DOI 10.17182/hepdata.33111

A measurement of the differential cross section for the reaction np→ π 0 d has been made at the Lawrence Radiation Laboratory 184-inch cyclotron. A neutron beam with kinetic energies up to 720 MeV was incident on a liquid hydrogen target. The angle and momentum of the deuterons were measured using an analyzing magnet and wire spark chambers with a magnetostrictive readout. Deuterons were separated from protons by time-of-flight. The photons from the decaying π 0 were not detected. The neutron energy was calculated from the measured deuteron angle and momentum.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Deviation from quark-number scaling of the anisotropy parameter v_2 of pions, kaons, and protons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 85 (2012) 064914, 2012.
Inspire Record 1093596 DOI 10.17182/hepdata.141645

Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).

21 data tables

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

More…