High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the event-wise average transverse momentum ($P([p_{\mathrm{T}}])$). Distinguishing between contributions from fluctuations in the size of the nuclear overlap area (geometrical component) and other sources at fixed size (intrinsic component) presents a challenge. Here, these two components are distinguished by measuring the mean, variance, and skewness of $P([p_{\mathrm{T}}])$ in $^{208}$Pb+$^{208}$Pb and $^{129}$Xe+$^{129}$Xe collisions at $\sqrt{s_{{\mathrm{NN}}}} = 5.02$ and 5.44 TeV, respectively, using the ATLAS detector at the LHC. All observables show distinct changes in behavior in ultra-central collisions, where the geometrical variations are suppressed as the overlap area reaches its maximum. These results demonstrate a new technique to disentangle geometrical and intrinsic fluctuations, enabling constraints on initial condition and properties of the quark-gluon plasma, such as the speed of sound.
Data from Figure 1, panel a, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Xe+Xe collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Measurements of (anti)deuteron and (anti)$^3$He production in the rapidity range $ |y| < $ 0.5 as a function of the transverse momentum and event multiplicity in Xe$-$Xe collisions at a center-of-mass energy per nucleon$-$nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.44 TeV are presented. The coalescence parameters $B_2$ and $B_3$ are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)$^3$He yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density, and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe$-$Xe collisions and shows features similar to those already observed in Pb$-$Pb collisions, i.e., the mass ordering at low transverse momentum and the meson$-$baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe$-$Xe collisions. The extracted chemical freeze-out temperature $T_{\rm chem}$ = (154.2 $\pm$ 1.1) MeV in Xe$-$Xe collisions is similar to that observed in Pb$-$Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations.
Transverse momentum spectra of 3He nuclei measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (right panel).
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 0 to 10 percent.
Transverse momentum spectra of deuterons measured in Xe--Xe collisions at centre-of-mass per nucleon-nucleon energy of 5.44 TeV, as shown in Fig. 3 (left panel). Centrality class 10 to 20 percent.
The first measurements of $\mathrm{K^{*}(892)^{0}}$ resonance production as a function of charged-particle multiplicity in Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.44 TeV and pp collisions at $\sqrt{s}=$ 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity ($|y|< 0.5$) using the hadronic decay channel $\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}$. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of $\mathrm{K^{*0}}$, and yield ratios of resonance to stable hadron ($\mathrm{K^{*0}}$/K) are compared across different collision systems (pp, p$-$Pb, Xe$-$Xe, and Pb$-$Pb) at similar collision energies to investigate how the production of $\mathrm{K^{*0}}$ resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of $\mathrm{K^{*0}}$ in Xe$-$Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model.
$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 0-1\% multiplicity class.
$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 1-5\% multiplicity class.
$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 5-10\% multiplicity class.
The pseudorapidity dependence of elliptic ($v_2$), triangular ($v_3$), and quadrangular ($v_4$) flow coefficients of charged particles measured in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV and in Xe-Xe collisions at $\sqrt{s_{\rm NN}}=5.44$ TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range $-3.5 < \eta < 5$ for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient $v_2$ calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to $3+1$ dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement.
$v_{2}\{2\}$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{s_{\mathrm{NN}}}=5.023\,\mathrm{Te\!V}$
$v_{3}\{2\}$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{s_{\mathrm{NN}}}=5.023\,\mathrm{Te\!V}$
$v_{4}\{2\}$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{s_{\mathrm{NN}}}=5.023\,\mathrm{Te\!V}$
This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.
- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i> <a href="?version=1&table=Table1">for p+Pb</a> <a href="?version=1&table=Table10">for Pb+Pb</a> <a href="?version=1&table=Table19">for Xe+Xe</a> <br><i>p+Pb:</i> <a href="?version=1&table=Table2">0-5%</a> <a href="?version=1&table=Table3">5-10%</a> <a href="?version=1&table=Table4">10-20%</a> <a href="?version=1&table=Table5">20-30%</a> <a href="?version=1&table=Table6">30-40%</a> <a href="?version=1&table=Table7">40-60%</a> <a href="?version=1&table=Table8">60-90%</a> <a href="?version=1&table=Table9">0-90%</a> <br><i>Pb+Pb:</i> <a href="?version=1&table=Table11">0-5%</a> <a href="?version=1&table=Table12">5-10%</a> <a href="?version=1&table=Table13">10-20%</a> <a href="?version=1&table=Table14">20-30%</a> <a href="?version=1&table=Table15">30-40%</a> <a href="?version=1&table=Table16">40-50%</a> <a href="?version=1&table=Table17">50-60%</a> <a href="?version=1&table=Table18">60-80%</a> <br><i>Xe+Xe:</i> <a href="?version=1&table=Table20">0-5%</a> <a href="?version=1&table=Table21">5-10%</a> <a href="?version=1&table=Table22">10-20%</a> <a href="?version=1&table=Table23">20-30%</a> <a href="?version=1&table=Table24">30-40%</a> <a href="?version=1&table=Table25">40-50%</a> <a href="?version=1&table=Table26">50-60%</a> <a href="?version=1&table=Table27">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i> <a href="?version=1&table=Table28">0-5%</a> <a href="?version=1&table=Table29">5-10%</a> <a href="?version=1&table=Table30">10-20%</a> <a href="?version=1&table=Table31">20-30%</a> <a href="?version=1&table=Table32">30-40%</a> <a href="?version=1&table=Table33">40-60%</a> <a href="?version=1&table=Table34">60-90%</a> <a href="?version=1&table=Table35">0-90%</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <a href="?version=1&table=Table36">0-5%</a> <a href="?version=1&table=Table37">5-10%</a> <a href="?version=1&table=Table38">10-20%</a> <a href="?version=1&table=Table39">20-30%</a> <a href="?version=1&table=Table40">30-40%</a> <a href="?version=1&table=Table41">40-50%</a> <a href="?version=1&table=Table42">50-60%</a> <a href="?version=1&table=Table43">60-80%</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <a href="?version=1&table=Table44">0-5%</a> <a href="?version=1&table=Table45">5-10%</a> <a href="?version=1&table=Table46">10-20%</a> <a href="?version=1&table=Table47">20-30%</a> <a href="?version=1&table=Table48">30-40%</a> <a href="?version=1&table=Table49">40-50%</a> <a href="?version=1&table=Table50">50-60%</a> <a href="?version=1&table=Table51">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br> 0-5%: <a href="?version=1&table=Table52">0.66-0.755GeV</a> <a href="?version=1&table=Table53">2.95-3.35GeV</a> <a href="?version=1&table=Table54">7.65-8.8GeV</a> <a href="?version=1&table=Table55">15.1-17.3GeV</a> <br> 5-10%: <a href="?version=1&table=Table56">0.66-0.755GeV</a> <a href="?version=1&table=Table57">2.95-3.35GeV</a> <a href="?version=1&table=Table58">7.65-8.8GeV</a> <a href="?version=1&table=Table59">15.1-17.3GeV</a> <br> 10-20%: <a href="?version=1&table=Table60">0.66-0.755GeV</a> <a href="?version=1&table=Table61">2.95-3.35GeV</a> <a href="?version=1&table=Table62">7.65-8.8GeV</a> <a href="?version=1&table=Table63">15.1-17.3GeV</a> <br> 20-30%: <a href="?version=1&table=Table64">0.66-0.755GeV</a> <a href="?version=1&table=Table65">2.95-3.35GeV</a> <a href="?version=1&table=Table66">7.65-8.8GeV</a> <a href="?version=1&table=Table67">15.1-17.3GeV</a> <br> 30-40%: <a href="?version=1&table=Table68">0.66-0.755GeV</a> <a href="?version=1&table=Table69">2.95-3.35GeV</a> <a href="?version=1&table=Table70">7.65-8.8GeV</a> <a href="?version=1&table=Table71">15.1-17.3GeV</a> <br> 40-60%: <a href="?version=1&table=Table72">0.66-0.755GeV</a> <a href="?version=1&table=Table73">2.95-3.35GeV</a> <a href="?version=1&table=Table74">7.65-8.8GeV</a> <a href="?version=1&table=Table75">15.1-17.3GeV</a> <br> 60-90%: <a href="?version=1&table=Table76">0.66-0.755GeV</a> <a href="?version=1&table=Table77">2.95-3.35GeV</a> <a href="?version=1&table=Table78">7.65-8.8GeV</a> <a href="?version=1&table=Table79">15.1-17.3GeV</a> <br> 0-90%: <a href="?version=1&table=Table80">0.66-0.755GeV</a> <a href="?version=1&table=Table81">2.95-3.35GeV</a> <a href="?version=1&table=Table82">7.65-8.8GeV</a> <a href="?version=1&table=Table83">15.1-17.3GeV</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br> 0-5%: <a href="?version=1&table=Table84">1.7-1.95GeV</a> <a href="?version=1&table=Table85">6.7-7.65GeV</a> <a href="?version=1&table=Table86">20-23GeV</a> <a href="?version=1&table=Table87">60-95GeV</a> <br> 5-10%: <a href="?version=1&table=Table88">1.7-1.95GeV</a> <a href="?version=1&table=Table89">6.7-7.65GeV</a> <a href="?version=1&table=Table90">20-23GeV</a> <a href="?version=1&table=Table91">60-95GeV</a> <br> 10-20%: <a href="?version=1&table=Table92">1.7-1.95GeV</a> <a href="?version=1&table=Table93">6.7-7.65GeV</a> <a href="?version=1&table=Table94">20-23GeV</a> <a href="?version=1&table=Table95">60-95GeV</a> <br> 20-30%: <a href="?version=1&table=Table96">1.7-1.95GeV</a> <a href="?version=1&table=Table97">6.7-7.65GeV</a> <a href="?version=1&table=Table98">20-23GeV</a> <a href="?version=1&table=Table99">60-95GeV</a> <br> 30-40%: <a href="?version=1&table=Table100">1.7-1.95GeV</a> <a href="?version=1&table=Table101">6.7-7.65GeV</a> <a href="?version=1&table=Table102">20-23GeV</a> <a href="?version=1&table=Table103">60-95GeV</a> <br> 40-50%: <a href="?version=1&table=Table104">1.7-1.95GeV</a> <a href="?version=1&table=Table105">6.7-7.65GeV</a> <a href="?version=1&table=Table106">20-23GeV</a> <a href="?version=1&table=Table107">60-95GeV</a> <br> 50-60%: <a href="?version=1&table=Table108">1.7-1.95GeV</a> <a href="?version=1&table=Table109">6.7-7.65GeV</a> <a href="?version=1&table=Table110">20-23GeV</a> <a href="?version=1&table=Table111">60-95GeV</a> <br> 60-80%: <a href="?version=1&table=Table112">1.7-1.95GeV</a> <a href="?version=1&table=Table113">6.7-7.65GeV</a> <a href="?version=1&table=Table114">20-23GeV</a> <a href="?version=1&table=Table115">60-95GeV</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br> 0-5%: <a href="?version=1&table=Table116">1.7-1.95GeV</a> <a href="?version=1&table=Table117">6.7-7.65GeV</a> <a href="?version=1&table=Table118">20-23GeV</a> <br> 5-10%: <a href="?version=1&table=Table119">1.7-1.95GeV</a> <a href="?version=1&table=Table120">6.7-7.65GeV</a> <a href="?version=1&table=Table121">20-23GeV</a> <br> 10-20%: <a href="?version=1&table=Table122">1.7-1.95GeV</a> <a href="?version=1&table=Table123">6.7-7.65GeV</a> <a href="?version=1&table=Table124">20-23GeV</a> <br> 20-30%: <a href="?version=1&table=Table125">1.7-1.95GeV</a> <a href="?version=1&table=Table126">6.7-7.65GeV</a> <a href="?version=1&table=Table127">20-23GeV</a> <br> 30-40%: <a href="?version=1&table=Table128">1.7-1.95GeV</a> <a href="?version=1&table=Table129">6.7-7.65GeV</a> <a href="?version=1&table=Table130">20-23GeV</a> <br> 40-50%: <a href="?version=1&table=Table131">1.7-1.95GeV</a> <a href="?version=1&table=Table132">6.7-7.65GeV</a> <a href="?version=1&table=Table133">20-23GeV</a> <br> 50-60%: <a href="?version=1&table=Table134">1.7-1.95GeV</a> <a href="?version=1&table=Table135">6.7-7.65GeV</a> <a href="?version=1&table=Table136">20-23GeV</a> <br> 60-80%: <a href="?version=1&table=Table137">1.7-1.95GeV</a> <a href="?version=1&table=Table138">6.7-7.65GeV</a> <a href="?version=1&table=Table139">20-23GeV</a> <br>- - - - - - - - - - - - - - - - - - - -
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Multiplicity ($N_{\rm ch}$) distributions and transverse momentum ($p_{\rm T}$) spectra of inclusive primary charged particles in the kinematic range of $|\eta| < 0.8$ and 0.15 GeV/$c$$< p_{T} <$ 10 GeV/$c$ are reported for pp, p-Pb, Xe-Xe and Pb-Pb collisions at centre-of-mass energies per nucleon pair ranging from $\sqrt{s_{\rm NN}} = 2.76$ TeV up to $13$ TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the $p_{\rm T}$ spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Charged-particle transverse momentum spectra as a function of charged-particle multiplicity for pp collisions at 2.76 TeV.
Charge-dependent two- and three-particle correlations measured in Xe-Xe collisions at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV are presented. Results are obtained for charged particles in the pseudorapidity range $|\eta|<0.8$ and transverse momentum interval $0.2 \le p_{\rm T}<5.0$ GeV/$c$ for different collision centralities. The three-particle correlator ${\gamma_{\alpha\beta}} \equiv {\langle \cos(\varphi_\alpha + \varphi_\beta - 2{\Psi_{\rm 2}}) \rangle}$, calculated for different combinations of charge sign $\alpha$ and $\beta$, is expected to be sensitive to the presence of the Chiral Magnetic Effect (CME). Its magnitude is similar to the one observed in Pb-Pb collisions in contrast to a smaller CME signal in Xe-Xe collisions than in Pb-Pb collisions predicted by Monte Carlo (MC) calculations including a magnetic field induced by the spectator protons. These observations point to a large non-CME contribution to the correlator. Furthermore, the charge dependence of ${\gamma_{\alpha\beta}}$ can be described by a blast wave model calculation that incorporates background effects and by the Anomalous Viscous Fluid Dynamics model with values of the CME signal consistent with zero. The Xe-Xe and Pb-Pb results are combined with the expected CME signal dependence on the system size from the MC calculations including a magnetic field to obtain the fraction of CME contribution in ${\gamma_{\alpha\beta}}$, $f_{\rm CME}$. The CME fraction is compatible with zero for the 30% most central events in both systems and then becomes positive. This yields an upper limit of 2% (3%) and 25% (32%) at 95% (99.7%) confidence level for the CME signal contribution to ${\gamma_{\alpha\beta}}$ in the 0-70% Xe-Xe and Pb-Pb collisions, respectively.
$\langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle$ (opposite charge pairs) as a function of centrality in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV.
$\langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle$ (same charge pairs) as a function of centrality in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV.
$\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{2}) \rangle$ (opposite charge pairs) as a function of centrality in Xe-Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV.
The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
Measurements of the pseudorapidity distributions of charged hadrons produced in xenon-xenon collisions at a nucleon-nucleon centre-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.44 TeV are presented. The measurements are based on data collected by the CMS experiment at the LHC. The yield of primary charged hadrons produced in xenon-xenon collisions in the pseudorapidity range $|\eta|$ $<$ 3.2 is determined using the silicon pixel detector in the CMS tracking system. For the 5% most central collisions, the charged-hadron pseudorapidity density in the midrapidity region $|\eta|$ $<$ 0.5 is found to be 1187 $\pm$ 36 (syst), with a negligible statistical uncertainty. The rapidity distribution of charged hadrons is also presented in the range $|y|$ $<$ 3.2 and is found to be independent of rapidity around $y =$ 0. Existing Monte-Carlo event generators are unable to simultaneously describe both results. Comparisons of charged-hadron multiplicities between xenon-xenon and lead-lead collisions at similar collision energies show that particle production at midrapidity is strongly dependent on the collision geometry in addition to the system size and collision energy.
Averaged and symmetrised charged-hadron pseudorapidity density distributions in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV, for events in the 0--80\%, 0--5\%, and 50--55\% centrality intervals. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.
Averaged and symmetrised charged-hadron rapidity density distributions in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV, for events in the 0--80\% centrality interval. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.
Charged-hadron pseudorapidity density in XeXe collisions at $\sqrt{s_{NN}} = 5.44$ TeV at midrapidity as a function of event centrality. The total uncertainty is dominated by the systematic uncertainty, and statistical uncertainties are negligible.
The differential yields of charged particles having pseudorapidity within $|\eta|<$ 1 are measured using xenon-xenon (XeXe) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV. The data, corresponding to an integrated luminosity of 3.42 $\mu$b$^{-1}$, were collected in 2017 by the CMS experiment at the LHC. The yields are reported as functions of collision centrality and transverse momentum, $p_\mathrm{T}$, from 0.5 to 100 GeV. A previously reported $p_\mathrm{T}$ spectrum from proton-proton collisions at $\sqrt{s}$ = 5.02 TeV is used for comparison after correcting for the difference in center-of-mass energy. The nuclear modification factors using this reference, $R_\mathrm{AA}^*$, are constructed and compared to previous measurements and theoretical predictions. In head-on collisions, the $R_\mathrm{AA}^*$ has a value of 0.17 in the $p_\mathrm{T}$ range of 6-8 GeV, but increases to approximately 0.7 at 100 GeV. Above $\approx$ 6 GeV, the XeXe data show a notably smaller suppression than previous results for lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV when compared at the same centrality (i.e., the same fraction of total cross section). However, the XeXe suppression is slightly greater than that for PbPb in events having a similar number of participating nucleons.
The per-event differential invariant yield of charged particles having |eta|<1 in XeXe collisions at sqrt(s_NN)=5.44 TeV. The first systematic uncertainty describes uncertainties that are not fully correlated across points, while the second systematic uncertainty is a normalization uncertainty that is fully correlated across all points. Bins where no data point has been reported are denoted as 'empty'.
The per-event differential invariant yield of charged particles having |eta|<1 in pp collisions at sqrt(s)=5.44 TeV, after extrpolation from 5.02 TeV data. The first systematic uncertainty describes uncertainties that are not fully correlated across points, while the second systematic uncertainty is a normalization uncertainty that is fully correlated across all points. The data is measured and extrapolated as a differential cross section, and transformed into a differential yield using an inelastic cross-section of 70 mb.
The nuclear modification factor of charged particles having |eta|<1 in XeXe collisions at sqrt(s_NN)=5.44 TeV. The first systematic uncertainty describes uncertainties that are not fully correlated across points, while the second systematic uncertainty is a normalization uncertainty that is fully correlated across all points. Bins where no data point has been reported are denoted as 'empty'.