Measurement of prompt photon production in $\sqrt{s_\mathrm{NN}} = 8.16$ TeV $p$+Pb collisions with ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 796 (2019) 230-252, 2019.
Inspire Record 1723858 DOI 10.17182/hepdata.87256

The inclusive production rates of isolated, prompt photons in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb$^{-1}$ recorded in 2016. The cross-section and nuclear modification factor $R_{p\mathrm{Pb}}$ are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83,-2.02), (-1.84,0.91), and (1.09,1.90). The cross-section and $R_{p\mathrm{Pb}}$ values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei.

3 data tables match query

The measured cross sections for prompt, isolated photons with rapidity in (1.09,1.90).

The measured cross sections for prompt, isolated photons with rapidity in (−1.84,0.91).

The measured cross sections for prompt, isolated photons with rapidity in (−2.83,−2.02).


Measurement of the $t\bar{t}Z$ and $t\bar{t}W$ cross sections in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 072009, 2019.
Inspire Record 1713423 DOI 10.17182/hepdata.88175

A measurement of the associated production of a top-quark pair ($t\bar{t}$) with a vector boson ($W$, $Z$) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using $36.1$ fb$^{-1}$ of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The $t\bar{t}Z$ and $t\bar{t}W$ production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are $\sigma_{t\bar{t}Z} = 0.95 \pm 0.08_{\mathrm{stat.}} \pm 0.10_{\mathrm{syst.}}$ pb and $\sigma_{t\bar{t}W} = 0.87 \pm 0.13_{\mathrm{stat.}} \pm 0.14_{\mathrm{syst.}}$ pb in agreement with the Standard Model predictions. The measurement of the $t\bar{t}Z$ cross section is used to set constraints on effective field theory operators which modify the $t\bar{t}Z$ vertex.

5 data tables match query

The result of the simultaneous fit to the $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

68% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

95% confidence level (CL) contours of the measured $t\bar{t}Z$ and $t\bar{t}W$ cross sections.

More…

Search for the electroweak diboson production in association with a high-mass dijet system in semileptonic final states in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 100 (2019) 032007, 2019.
Inspire Record 1735560 DOI 10.17182/hepdata.89647

This paper reports on a search for the electroweak diboson ($WW/WZ/ZZ$) production in association with a high-mass dijet system, using data from proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV. The data, corresponding to an integrated luminosity of 35.5 fb$^{-1}$, were recorded with the ATLAS detector in 2015 and 2016 at the Large Hadron Collider. The search is performed in final states in which one boson decays leptonically, and the other boson decays hadronically. The hadronically decaying $W/Z$ boson is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. The electroweak production of $WW/WZ/ZZ$ in association with two jets is measured with an observed (expected) significance of 2.7 (2.5) standard deviations, and the fiducial cross section is measured to be $45.1 \pm 8.6(\mathrm{stat.}) ^{+15.9} _{-14.6} (\mathrm{syst.})$ fb.

2 data tables match query

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. The three lepton channels are combined. For the measured fiducial cross sections in the merged and resolved categories, two signal-strength parameters are used in the combined fit, one for the merged category and the other one for the resolved category; while for the measured fiducial cross section in the inclusive fiducial phase space, a single signal-strength parameter is used. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).

Summary of predicted and measured fiducial cross sections for EW $VVjj$ production. in the three lepton channels. The measured values are obtained from a simultaneous fit where each lepton channel has its own signal-strength parameter, and in each lepton channel the same signal-strength parameter is applied to both the merged and resolved categories. For the SM predicted cross section, the error is the theoretical uncertainty (theo.). For the measured cross section, the first error is the statistical uncertainty (stat.), and the second error is the systematic uncertainty (syst.).


Search for excited electrons singly produced in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the LHC

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 803, 2019.
Inspire Record 1738845 DOI 10.17182/hepdata.90452

A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.

7 data tables match query

The distribution of $m_{lljj}$ used to discriminate the signal from background processes in the $eejj$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.

The distribution of $m_{T}^{\nu W}$ used to discriminate the signal and background processes in the $e\nu J$ channel. The distribution is shown after applying the preselection criteria. The background contributions are constrained using the CRs. The signal models assume $\Lambda$ = 5 TeV. The last bin includes overflow events (the underflow is not shown). The uncertainties for the expected backgrounds represent all considered systematic and statistical sources.

Upper limits on $\sigma\times B$ as a function of $m_{e^*}$ in the $eejj$ channel. The $\pm 1(2)\sigma$ uncertainty bands around the expected limit represent all sources of systematic and statistical uncertainties.

More…

Dijet azimuthal correlations and conditional yields in $pp$ and $p$+Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.C 100 (2019) 034903, 2019.
Inspire Record 1717481 DOI 10.17182/hepdata.93905

This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton ($pp$) and proton-lead ($p$+Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb$^{-1}$ of $pp$ data and 360 $\mu \mathrm{b}^{-1}$ of $p$+Pb data, both at $\sqrt{s_{\rm NN}}$ = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the LHC. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between $-$4.0 and 4.0 using the two highest transverse momentum jets in each event, with the highest transverse momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in $p$+Pb compared to $pp$ collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in $p$+Pb collisions to those in $pp$ collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets.

11 data tables match query

Unfolded azimuthal angular correlation distributions. Black markers represent p+Pb, red markers p+p

Unfolded width of azimuthal angular correlation distributions. Full markers represent p+Pb, open markers p+p

Unfolded Dijet conditional yields. Full markers represent p+Pb, open markers p+p

More…

Measurement of fiducial and differential $W^+W^-$ production cross-sections at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 884, 2019.
Inspire Record 1734263 DOI 10.17182/hepdata.89225

A measurement of fiducial and differential cross-sections for $W^+W^-$ production in proton-proton collisions at $\sqrt{s}=$13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of $36.1$ fb$^{-1}$ is presented. Events with one electron and one muon are selected, corresponding to the decay of the diboson system as $WW\rightarrow e^{\pm}\nu\mu^{\mp}\nu$. To suppress top-quark background, events containing jets with a transverse momentum exceeding 35 GeV are not included in the measurement phase space. The fiducial cross-section, six differential distributions and the cross-section as a function of the jet-veto transverse momentum threshold are measured and compared with several theoretical predictions. Constraints on anomalous electroweak gauge boson self-interactions are also presented in the framework of a dimension-six effective field theory.

43 data tables match query

Measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Statistical correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

Total correlation between bins in data for the measured fiducial cross-section as a function of the jet-veto $p_{T}$ threshold. The value at the jet-veto $p_{T}$ threshold of 35GeV corresponds to the nominal fiducial cross section measured in this publication.

More…

Measurement of the ratio of cross sections for inclusive isolated-photon production in $pp$ collisions at $\sqrt s = 13$ and $8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 093, 2019.
Inspire Record 1717495 DOI 10.17182/hepdata.89370

The ratio of the cross sections for inclusive isolated-photon production in $pp$ collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb$^{-1}$ and 20.2 fb$^{-1}$, respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of $2.5$ ($5$) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for $Z$ boson production at 13 and 8 TeV using the decay channels $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

16 data tables match query

Measured ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Predicted ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$.

Measured ratio of cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<1.37$.

More…

Measurement of the cross-section and charge asymmetry of $W$ bosons produced in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 79 (2019) 760, 2019.
Inspire Record 1729240 DOI 10.17182/hepdata.89322

This paper presents measurements of the $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\nu$ cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of $20.2~\mbox{fb$^{-1}$}$. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.

8 data tables match query

The correction factors, $C_{W^±,i}$ with their associated systematic uncertainties as a function of $|\eta_{\mu}|$, for $W^+$ and $W^−$

The integrated global correction factor $C_{W^±}$, for $W^+$ and $W^−$

Cross-sections (differential in $\eta_{\mu}$) and asymmetry, as a function of $|\eta_{\mu}|$). The central values are provided along with the statistical and dominant systematic uncertainties: the data statistical uncertainty (Data Stat.), the $E_T^{\textrm{miss}}$ uncertainty, the uncertainties related to muon reconstruction (Muon Reco.), those related to the background, those from MC statistics (MC Stat.), and modelling uncertainties. The uncertainties of the cross-sections are given in percent and those of the asymmetry as an absolute difference from the nominal.

More…

Constraints on Higgs boson properties using $WW^{*}(\rightarrow e\nu\mu\nu) jj$ production in 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 82 (2022) 622, 2022.
Inspire Record 1932467 DOI 10.17182/hepdata.130779

This article presents the results of two studies of Higgs boson properties using the $WW^*(\rightarrow e\nu\mu\nu)jj$ final state, based on a dataset corresponding to 36.1/fb of $\sqrt{s}$=13 TeV proton$-$proton collisions recorded by the ATLAS experiment at the Large Hadron Collider. The first study targets Higgs boson production via gluon$-$gluon fusion and constrains the CP properties of the effective Higgs$-$gluon interaction. Using angular distributions and the overall rate, a value of $\tan(\alpha) = 0.0 \pm 0.4$ stat. $ \pm 0.3$ syst is obtained for the tangent of the mixing angle for CP-even and CP-odd contributions. The second study exploits the vector-boson fusion production mechanism to probe the Higgs boson couplings to longitudinally and transversely polarised $W$ and $Z$ bosons in both the production and the decay of the Higgs boson; these couplings have not been directly constrained previously. The polarisation-dependent coupling-strength scale factors are defined as the ratios of the measured polarisation-dependent coupling strengths to those predicted by the Standard Model, and are determined using rate and kinematic information to be $a_L=0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $a_{T}=1.2 \pm 0.4 $(stat.)$ ^{+0.2}_{-0.3} $(syst.). These coupling strengths are translated into pseudo-observables, resulting in $\kappa_{VV}= 0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $\epsilon_{VV} =0.13^{+0.28}_{-0.20}$ (stat.)$^{+0.08}_{-0.10}$(syst.). All results are consistent with the Standard Model predictions.

19 data tables match query

Post-fit NFs and their uncertainties for the Z+jets, top and WW backgrounds. Both sets of normalisation factors differ slightly depending on which (B)SM model is tested, but are consistent within their total uncertainties.

Post-fit event yields in the signal and control regions obtained from the study of the signal strength parameter $\mu^{\text{ggF+2jets}}$. The quoted uncertainties include the theoretical and experimental systematic sources and those due to sample statistics. The fit constrains the total expected yield to the observed yield. The diboson background is split into $W W$ and non-$W W$ contributions.

Breakdown of the main contributions to the total uncertainty on $\tan \alpha$ based on the fit that exploits both shape and rate information. Individual sources of systematic uncertainty are grouped into either the theoretical or the experimental uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

More…

Measurements of $W^+W^-+\ge 1~$jet production cross-sections in $pp$ collisions at $\sqrt{s}=13~$TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 003, 2021.
Inspire Record 1852328 DOI 10.17182/hepdata.100511

Fiducial and differential measurements of $W^+W^-$ production in events with at least one hadronic jet are presented. These cross-section measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton$-$proton collision data collected at $\sqrt{s}=13~$TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139$~$fb$^{-1}$. Events are selected with exactly one oppositely charged electron$-$muon pair and at least one hadronic jet with a transverse momentum of $p_{\mathrm{T}}>30~$GeV and a pseudorapidity of $|\eta|<4.5$. After subtracting the background contributions and correcting for detector effects, the jet-inclusive $W^+W^-+\ge 1~$jet fiducial cross-section and $W^+W^-+$ jets differential cross-sections with respect to several kinematic variables are measured, thus probing a previously unexplored event topology at the LHC. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the $W^+W^-$ system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced.

55 data tables match query

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1168 GeV.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$

More…