Showing 1 of 1 results
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of VBF wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Observed 95% CL exclusion sensitivity for simplified models of direct wino-bino production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH slepton production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH smuon production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct LH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Expected 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Observed 95% CL exclusion sensitivity for simplified models of direct RH selectron production.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2N1 higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1p higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-high region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-low region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-med region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Efficiency for the N2C1m higgsino process in the SR-E-1l1T region. Truth dilepton invariant mass is constrained to be within the range [0.5,60] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-high region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-3}$) for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Efficiency for the slepton process in the SR-S-low region. Truth stransverse mass is constrained to be within the range [100,140] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the C1C1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2N1 VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1p VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for higgsino scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct slepton scenarios.
Observed and Expected upper cross-section limits for direct slepton scenarios.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF-low region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Acceptance (note the $z$-axis is in units of $10^{-4}$) for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Efficiency for the N2C1m VBF higgsino process in the SR-VBF region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})>0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed and Expected upper cross-section limits for wino-bino scenarios, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
Observed and Expected upper cross-section limits for higgsino scenarios.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Observed and Expected upper cross-section limits for higgsino scenarios, assuming VBF production..
Observed and Expected upper cross-section limits for direct slepton scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Observed and Expected upper cross-section limits for direct slepton scenarios.
Observed and Expected upper cross-section limits for direct slepton scenarios.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Observed and Expected upper cross-section limits for direct LH slepton scenarios.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Observed and Expected upper cross-section limits for direct RH slepton scenarios.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Observed and Expected upper cross-section limits for direct smuon scenarios.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Observed and Expected upper cross-section limits for direct LH smuon scenarios.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Observed and Expected upper cross-section limits for direct RH smuon scenarios.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Observed and Expected upper cross-section limits for direct selectron scenarios.
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Observed and Expected upper cross-section limits for direct LH selectron scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Observed and Expected upper cross-section limits for direct RH selectron scenarios.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-1L1T for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-high for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-low for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-E-med for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (155 GeV, 150 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-high for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-S-low for the (m($\tilde{\ell}$),m($\tilde{\chi}_{1}^{0}$)) = (150 GeV, 140 GeV) Slepton signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
Number of signal events in SR-VBF for the (m($\tilde{\chi}_{2}^{0}$),m($\tilde{\chi}_{1}^{0}$)) = (100 GeV, 95 GeV) Higgsino signal model at different stages of selection before and after weighting events to correspond to 140/fb.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.