The inclusive J/psi production cross-section and fraction of J/psi mesons produced in B-hadron decays are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the J/psi, using 2.3 pb-1 of integrated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum of 70 GeV and for rapidities within |y| < 2.4 giving the widest reach of any measurement of J/psi production to date. The differential production cross-sections of prompt and non-prompt J/psi are separately determined and are compared to Colour Singlet NNLO*, Colour Evaporation Model, and FONLL predictions.
Total cross section for inclusive andd non-prompt J/PSI (-> MU+MU-) production in the range |y| < 2.4 and pT > 7 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Total cross section for inclusive and non-prompt J/PSI (-> MU+MU-) production in the range 1.5 < |y| < 2 and pT > 1 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 2<|y|<2.4. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
This Letter presents the first search for a heavy particle decaying into an e\mu final state in sqrt(s)=7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35/pb. No excess above the Standard Model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming single coupling dominance and the couplings lambda'_{311}=0.11, lambda_{312}=0.07. In a lepton flavor violating model, a Z'-like vector boson with masses of 0.70 to 1.00 TeV and corresponding cross sections times branching ratios of 0.175 to 0.183 pb is excluded. These results extend to higher mass RPV sneutrinos and LFV Z's than previous constraints from the Tevatron.
Observed e-mu invariant mass distribution.
The observed 95% CL upper limits on the cross section for p p --> sneutrino x BR(sneutrino -> e-mu) as a function of the sneutrino mass.
The 95% CL upper limits on the Lambda311 coupling as a function of the sneutrino mass, for threee values of Lambda312.
A search for Z bosons in the mu^+mu^- decay channel has been performed in PbPb collisions at a nucleon-nucleon centre of mass energy = 2.76 TeV with the CMS detector at the LHC, in a 7.2 inverse microbarn data sample. The number of opposite-sign muon pairs observed in the 60--120 GeV/c2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of (33.8 ± 5.5 (stat) ± 4.4 (syst)) 10^{-8}, in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event in the range |yrap| < 2.0.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of rapidity, and the nuclear modification factor RAA derived by using a POWHEG proton-proton reference.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of transverse momentum, and the nuclear modificationfactor RAA derived by using a POWHEG proton-proton reference.
A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.
Total inclusive cross section in the visible kinematic range.
Muon transverse momentum differential distibution.
Muon pseudorapidity differential distibution.
This Letter reports on a first measurement of the inclusive W+jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma(W+ \ge n) / sigma(W+ \ge n-1) for inclusive jet multiplicities n=1-4. The results, based on an integrated luminosity of 1.3 pb-1, have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n \le 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicities.
The measured cross section times branching ratio for W+jets in the electron channel as a function of corrected jet multiplicity.
The measured cross section times branching ratio for W+jets in the muon channel as a function of corrected jet multiplicity.
The measured cross section ratio for W+jets in the electron channel as a function of corrected jet multiplicity.
The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.
Production cross sections integrated over the range |eta| < 2 and PT < 30 GeV. The second systematic error is the uncertainty on the luminosity.
UPSI(1S) differential cross sections for |y| < 2.
UPSI(2S) differential cross sections for |y| < 2.
The production of J/psi mesons is studied in pp collisions at sqrt(s)=7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 inverse nanobarns. The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range |y| < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 \pm 2.1 (stat.) \pm 3.0 (syst.) \pm 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 \pm 1.4 (stat.) \pm 1.6 (syst.) \pm 2.9 (luminosity) nb for J/psi mesons from b-hadron decays.
Total cross section within the kinematic limits for prompt and non-prompt J/PSI production times branching ratio into MU+ MU-, assuming zero polarizartion. The second systematic error is the luminosity uncertainty.
Differential inclusive cross J/PSI section for the |rapidity| range 0 to 1.2 for each prompt J/PSI polarization scenario considered.
Differential inclusive cross J/PSI section for the |rapidity| range 1.2 to 1.6 for each prompt J/PSI polarization scenario considered.
A sample of 3120 $K^\pm\to\pi^\pm\mu^+\mu^-$ decay candidates with $(3.3\pm0.7)%$ background contamination has been collected by the NA48/2 experiment at the CERN SPS, allowing a detailed study of the decay properties. The branching ratio was measured to be ${\rm BR}=(9.62\pm0.25)\times 10^{-8}$. The form factor $W(z)$, where $z=(M_{\mu\mu}/M_K)^2$, was parameterized according to several models. In particular, the slope of the linear form factor $W(z)=W_0(1+\delta z)$ was measured to be $\delta=3.11\pm0.57$. Upper limits of $2.9\times 10^{-2}$ and $2.3\times 10^{-2}$ on possible charge asymmetry and forward-backward asymmetry were established at 90% CL. An upper limit ${\rm BR}(K^\pm\to\pi^\mp\mu^\pm\mu^\pm)<1.1\times 10^{-9}$ was established at 90% CL for the rate of the lepton number violating decay.
The $d\Gamma_{\pi\mu\mu}/dz$ spectrum (background subtracted, corrected for trigger efficiency). Systematic errors, notably the external one due to the branching ratios of the normalization decay mode $K^\pm\to 3\pi^\pm$ according to PDG 2010, are not included.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.
The measured PHI* distributions for the dielectron events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
The measured PHI* distributions for the dimuon events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.