Measurements of inclusive and differential cross-sections of combined $t\bar{t}\gamma$ and $tW\gamma$ production in the $e\mkern-2mu\mu$ channel at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2020) 049, 2020.
Inspire Record 1806806 DOI 10.17182/hepdata.94915

Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton$-$proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is $b$-tagged, are selected. The fiducial cross-section is measured to be $39.6\,^{+2.7}_{-2.3}\,\textrm{fb}$. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.

24 data tables match query

The measured fiducial cross-section in the electron-muon channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon pT in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

The absolute differential cross-section measured in the fiducial phase-space as a function of the photon $|\eta|$ in the electron-muon channel. The uncertainty is decomposed into four components which are the signal modelling uncertainty, the background modelling uncertainty, the experimental uncertainty, and the data statistical uncertainty.

More…

Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables match query

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Version 2
Measurement of the $Z(\rightarrow\ell^+\ell^-)\gamma$ production cross-section in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 054, 2020.
Inspire Record 1764342 DOI 10.17182/hepdata.89875

The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

14 data tables match query

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

More…

Measurements of four-lepton production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 753 (2016) 552-572, 2016.
Inspire Record 1394865 DOI 10.17182/hepdata.18593

The four-lepton ($4\ell$, $\ell = e, \mu$) production cross section is measured in the mass range from 80 to 1000 GeV using 20.3 fb$^{-1}$ of data in $pp$ collisions at $\sqrt{s}=8$ TeV collected with the ATLAS detector at the LHC. The $4\ell$ events are produced in the decays of resonant $Z$ and Higgs bosons and the non-resonant $ZZ$ continuum originating from $q\bar q$, $gg$, and $qg$ initial states. A total of 476 signal candidate events are observed with a background expectation of $26.2 \pm 3.6$ events, enabling the measurement of the integrated cross section and the differential cross section as a function of the invariant mass and transverse momentum of the four-lepton system. In the mass range above $180$ GeV, assuming the theoretical constraint on the $q\bar q$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component relative to its leading-order prediction is determined to be $\mu_{gg}=2.4 \pm 1.0 (stat.) \pm 0.5 (syst.)\pm 0.8 (theory)$.

5 data tables match query

The measured differential cross-section distributions in unit of fb/TeV of $m_{4\ell}$ unfolded into the fiducial phase space, and compared to theory predictions. The first uncertainty is statistical, the second is systematic uncertainties.

The measured differential cross-section distributions in unit of fb/TeV of $p_{T}^{4\ell}$ unfolded into the fiducial phase space, and compared to theory predictions. The first uncertainty is statistical, the second is systematic uncertainties.

Measured cross sections in the fiducial phase space ($\sigma^\mathrm{fid}$) and extended phase space ($\sigma^\mathrm{ext}$), compared to their SM predictions. One should note that the non-resonant $gg$-induced signal cross section is only calculated at LO approximation.

More…

Measurement of the production cross section for W-bosons in association with jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 698 (2011) 325-345, 2011.
Inspire Record 882534 DOI 10.17182/hepdata.57048

This Letter reports on a first measurement of the inclusive W+jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma(W+ \ge n) / sigma(W+ \ge n-1) for inclusive jet multiplicities n=1-4. The results, based on an integrated luminosity of 1.3 pb-1, have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n \le 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicities.

8 data tables match query

The measured cross section times branching ratio for W+jets in the electron channel as a function of corrected jet multiplicity.

The measured cross section times branching ratio for W+jets in the muon channel as a function of corrected jet multiplicity.

The measured cross section ratio for W+jets in the electron channel as a function of corrected jet multiplicity.

More…

Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1763, 2011.
Inspire Record 917599 DOI 10.17182/hepdata.57625

Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb^-1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.

17 data tables match query

Total inclusive jet cross section as a function of the jet multiplicity.

Ratio of the n-jet cross section to the (n-1) jet cross section.

Differential cross section as a function of the leading jet PT for events with jet multiplicity >= 2.

More…

Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ ^{*}\rightarrow 4\ell$ Decay Channels at $\sqrt{s}=8$ TeV with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 115 (2015) 091801, 2015.
Inspire Record 1364361 DOI 10.17182/hepdata.57334

Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ ^{*}\rightarrow 4\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be $\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}$. The measurements are compared to state-of-the-art predictions.

17 data tables match query

Measured cross section in bins of $p_{\rm{T}}^{\rm{H}}$.

Measured cross section in bins of $|y^{\rm{H}}|$.

Measured cross section in bins of $N_{\rm{jets}}$.

More…

Measurement of the production cross section for Z/gamma* in association with jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 032009, 2012.
Inspire Record 945498 DOI 10.17182/hepdata.58228

Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

24 data tables match query

Cross section for Inclusive Jet Multiplicity corrected to the lepton common fiducial region and for QED radiation effects.

Ratio of cross sections for N/N-1 inclusive jet multiplicities corrected to the lepton common fiducial region and for QED radiation effects.

Inclusive jet differential cross section dsigma/dpt corrected to the lepton common fiducial region and for QED radiation effects.

More…

Measurement of the production of a W boson in association with a charm quark in pp collisions at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 068, 2014.
Inspire Record 1282447 DOI 10.17182/hepdata.63197

The production of a W boson in association with a single charm quark is studied using 4.6 fb^-1 of pp collision data at sqrt(s)=7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96 +0.26 -0.30 at Q^2=1.9 GeV^2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W^+ + bar{c})/sigma(W^- + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-bar{s} quark asymmetry.

17 data tables match query

Measured integrated cross sections of the production of a W boson with a single c-jet, a D meson or a D* meson times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured integrated cross section ratios of the production of W+ and W- bosons associated with a single c-jet, a D meson or a D* meson in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured differential cross sections as function of the lepton pseudo-rapidity of the production of a W boson with a single c-jet times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. The cross sections are defined for OS-SS events.

More…

Measurement of ZZ production in pp collisions at sqrt(s)=7 TeV and limits on anomalous ZZZ and ZZgamma couplings with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 03 (2013) 128, 2013.
Inspire Record 1203852 DOI 10.17182/hepdata.62535

A measurement of the ZZ production cross section in proton-proton collisions at sqrt(s) = 7 TeV using data recorded by the ATLAS experiment at the Large Hadron Collider is presented. In a data sample corresponding to an integrated luminosity of 4.6 fb-1 collected in 2011, events are selected that are consistent either with two Z bosons decaying to electrons or muons or with one Z boson decaying to electrons or muons and a second Z boson decaying to neutrinos. The ZZ*->llll and ZZ->llnunu cross sections are measured in restricted phase-space regions. These results are then used to derive the total cross section for ZZ events produced with both Z bosons in the mass range 66 to 116 GeV, sigmaZZtot = 6.7 +-0.7 +0.4-0.3 +-0.3 pb, which is consistent with the Standard Model prediction of 5.89+0.22-0.18 pb calculated at next-to-leading order in QCD. The normalized differential cross sections in bins of various kinematic variables are presented. Finally, the differential event yield as a function of the transverse momentum of the leading Z boson is used to set limits on anomalous neutral triple gauge boson couplings in ZZ production.

8 data tables match query

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

The measured total cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

Normalized ZZ fiducial cross section (multiplied by 10^6 for readability) in bins of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

More…