Showing 6 of 6 results
The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 $\lt m\lt$ 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb$^{-1}$ and 59.7 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of $0 \lt c\tau \lt$ 100 $\mu$m. Our results are combined with a previous CMS result, based on 35.9 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2017 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the 2018 analysis. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 60\GeV$ for the combined 2017 and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The model-independent 95\% \CL expected and observed upper limits set on ${\sigma(\PP\to 2\Pa+\PX)\mathcal{B}^2(\Pa\to 2\PGm)\alphaGen}$ over the range $0.21 < \MPa < 9\GeV$ for the combined 2016, 2017, and 2018 analyses. Mass ranges that overlap with \JPsi and \PgU resonances are excluded from the search
The 95\% \CL observed upper limits on the effective coupling $\CahLambda$ of the ALP to the SM Higgs assuming the branching fraction of the ALP to muons is 1 (blue) and 0.1 (orange), for both the expected (dashed) and observed (solid) limits
The 95\% \CL observed upper limits on the effective coupling $\cll/\Lambda$ of the ALP to the SM leptons. The orange shaded region represents the parameter space excluded by this search under three choices of $\CahLambda$ $1\TeV^{-2}$ (solid), $0.1\TeV^{-2}$ (dashed), and $0.01\TeV^{-2}$ (dotted)
The 95\% \CL observed upper limits on $\varepsilon^{2} \mathcal{B}(\ZDark \to \sDark \overline{\sDark}) \mathcal{B}^{2}(\sDark \rightarrow 2\PGm)$ for the vector portal model as a function of the dark scalar mass $\MsDark$ and dark vector boson mass $\MZDark$. The yellow and green bands indicate one and two standard deviation values of the limit, respectively. Because the model-independent limits are calculated only up to a dimuon mass of 60\GeV, the \sDark mass considered for these limits is below 60\GeV
The 95\% \CL observed upper limits for $\sigma(\PP\to\PhOneTwo\to 2\PaOne) \mathcal{B}^2(\PaOne\to 2\PGm)$ for the NMSSM as a function of $\MPaOne$ for $\MPhOneTwo$ = 90~GEV. The data presented here reflect the results of the 2017 and 2018 datasets combined with the previously published results of the 2016 dataset in \cite{CMS:2018jid}
The 95\% \CL observed upper limits for $\sigma(\PP\to\PhOneTwo\to 2\PaOne) \mathcal{B}^2(\PaOne\to 2\PGm)$ for the NMSSM as a function of $\MPaOne$ for $\MPhOneTwo$ = 125~GEV. The data presented here reflect the results of the 2017 and 2018 datasets combined with the previously published results of the 2016 dataset in \cite{CMS:2018jid}
The 95\% \CL observed upper limits for $\sigma(\PP\to\PhOneTwo\to 2\PaOne) \mathcal{B}^2(\PaOne\to 2\PGm)$ for the NMSSM as a function of $\MPaOne$ for $\MPhOneTwo$ = 150~GEV. The data presented here reflect the results of the 2017 and 2018 datasets combined with the previously published results of the 2016 dataset in \cite{CMS:2018jid}
The 95\% \CL observed upper limits (black solid curves) from this search as interpreted in the dark SUSY scenario for the process $\PP \to \Ph \to 2\nOne \to 2\gammaDark + 2\nDark \to 4\PGm + \PX$, with \mbox{$\MnOne = 60\GeV$} and $\MnDark = 1\GeV$. The limits are presented in the plane of $\varepsilon$ and $\MgammaDark$. The color gradient represents different branching fraction assumptions for \mbox{$\mathcal{B}(\Ph \to 2\nOne \to 2\gammaDark + 2\nDark)$}, ranging from dark orange (0.05\%) to light orange (10\%). The degradation of the limit around 1\GeV is attributed to the drop in the dimuon branching fraction $\mathcal{B}(\gammaDark \to 2\mu)$ due to the dimuon resonance of the $\phi$ meson~\cite{Batell:2009yf}
Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.
Expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
Observed 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.
Expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
Observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and h bosons.
Expected 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
Observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of higgsino GGM scenarios.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{+}\tilde{\chi}_{1}^{-}$.
The analyses used in combination for each scenario to set limits in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_{1}^{-}$.
Observed upper limit on the signal cross section in fb for chargino--neutralino production decaying via W and Z bosons.
The analyses used in combination for each scenario to set limits in models of chargino--neutralino production decaying via W and Z bosons.
Expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$+1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
$-1\sigma$ observed 95% CL exclusion limits on the simplified models of chargino--neutralino production decaying via W and Z bosons.
Observed upper limit on the signal cross section in fb for chargino--neutralino production decaying via W and h bosons.
The analyses used in combination for each scenario to set limits in models of chargino--neutralino production decaying via W and h bosons.
Observed upper limit on the signal cross section in fb for higgsino GGM scenarios.
The analyses used in combination for each scenario to set limits in higgsino GGM scenarios.
Three searches for the direct production of $\tau$-sleptons or charginos and neutralinos in final states with at least two hadronically decaying $\tau$-leptons are presented. For chargino and neutralino production, decays via intermediate $\tau$-sleptons or $W$ and $h$ bosons are considered. The analysis uses a dataset of $pp$ collisions corresponding to an integrated luminosity of $139\,$fb$^{-1}$, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. No significant deviation from the expected Standard Model background is observed and supersymmetric particle mass limits at 95% confidence level are obtained in simplified models. For direct production of $\tilde~{\chi}^+_1\tilde~{\chi}^-_1$, chargino masses are excluded up to 970 GeV, while $\tilde~{\chi}^{\pm}_1$ and $\tilde~{\chi}^0_2$ masses up to 1160 GeV (330 GeV) are excluded for $\tilde~{\chi}^{\pm}_1\tilde~{\chi}^0_2$/$\tilde~{\chi}^+_1\tilde~{\chi}^-_1$ production with subsequent decays via $\tau$-sleptons ($W$ and $h$ bosons). Masses of $\tau$-sleptons up to 500 GeV are excluded for mass degenerate $\tilde~{\tau}_{L,R}$ scenarios and up to 425 GeV for $\tilde~{\tau}_L$-only scenarios. Sensitivity to $\tilde~{\tau}_R$-only scenarios from the ATLAS experiment is presented here for the first time, with $\tilde~{\tau}_R$ masses excluded up to 350 GeV.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT1, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT2, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT3, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit BDT score distribution for the direct stau channel, showing the scores for BDT4, before the selections on the BDT score is made. The black arrow depicts the BDT score selection for the SR-BDT. A few example SUSY scenarios targeted by each BDT are overlaid for illustration.
The post-fit kinematic distribution for the Intermediate stau channel, showing the $m_{\mathrm{T}2}$ distribution in SR-C1C1-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate stau channel, showing the $m_{\mathrm{T}2}$ distribution in SR-C1N2OS-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate stau channel, showing the $m_{\mathrm{T}2}$ distribution in SR-C1N2SS-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate $Wh$ channel, showing the $m_{\mathrm{T}2}$ distribution in SR-Wh-LM, before the selection on $m_{\mathrm{T}2}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
The post-fit kinematic distribution for the Intermediate $Wh$ channel, showing the $m_{\mathrm{Tsum}}$ distribution in SR-Wh-HM, before the selection on $m_{\mathrm{Tsum}}$ is made. The black arrow depicts the selection for the signal region. An example SUSY scenario is overlaid for illustration.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$+1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
$-1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$ production.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$+1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
$-1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{L}\tilde{\tau}_{L}$ production.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$+1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
$-1\sigma$ observed 95\% CL exclusion limits on the simplified models of $\tilde{\tau}_{R}\tilde{\tau}_{R}$ production.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ production decaying via staus.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$).
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the OS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the OS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the SS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via staus (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$) using the SS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$).
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the OS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the OS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the SS signal regions.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$ (parameterised as $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_2^0)-m(\tilde{\chi}_1^0)$) using the SS signal regions.
Expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
$+1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
$-1\sigma$ expected 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
Observed 95\% CL exclusion limits on the simplified models of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production decaying via $Wh$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\tau}_{L}\tilde{\tau}_{L}$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\tau}_{R}\tilde{\tau}_{R}$.
The best expected signal region used to set limits in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The best expected signal region used to set limits in models of the production of $\tilde{\tau}_{L}\tilde{\tau}_{L}$.
The best expected signal region used to set limits in models of the production of $\tilde{\tau}_{R}\tilde{\tau}_{R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT1 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT1 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT2 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT2 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT3 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT3 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The acceptance $A$ of the direct stau production signal region SR-BDT4 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
The efficiency $\epsilon$ of the direct stau production signal region SR-BDT4 in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$.
Cutflow event yields of the direct stau production SRs in models of the production of $\tilde{\tau}_{L,R}\tilde{\tau}_{L,R}$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have at least two hadronically-decaying taus; be selected and matched by the asymmetric ditau trigger (with plateau cuts); have at least two medium taus of opposite sign and have $m_{\mathrm{T2}} > 30$ GeV. Cuts except the BDT score cuts are applied consecutively, while the BDT score cuts are applied one at a time.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$.
The acceptance $A$ of the Intermediate stau signal region SR-C1C1-LM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1C1-LM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1C1-HM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1C1-HM in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2OS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2OS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2SS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2SS-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2OS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2OS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The acceptance $A$ of the Intermediate stau signal region SR-C1N2SS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
The efficiency $\epsilon$ of the Intermediate stau signal region SR-C1N2SS-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$ decaying via staus.
Cutflow event yields of the Intermediate stau SRs in models of the production of $\tilde{\chi}_1^{+}\tilde{\chi}_1^{-}$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have at least two hadronically-decaying medium taus; be selected and matched by the asymmetric ditau trigger or ditau+MET trigger with offline cuts using HLT threshold values. The different yields of preliminary event reduction are caused by different trigger scale factor.
Cutflow event yields of the Intermediate stau SRs in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{0}$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have at least two hadronically-decaying medium taus; be selected and matched by the asymmetric ditau trigger or ditau+MET trigger with offline cuts using HLT threshold values. The different yields of preliminary event reduction are caused by different trigger scale factor.
Observed upper limit on the signal cross section in fb for the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The best expected signal region used to set limits in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The acceptance $A$ of the Intermediate $Wh$ signal region SR-Wh-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The efficiency $\epsilon$ of the Intermediate $Wh$ signal region SR-Wh-LM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The acceptance $A$ of the Intermediate $Wh$ signal region SR-Wh-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
The efficiency $\epsilon$ of the Intermediate $Wh$ signal region SR-Wh-HM in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$.
Cutflow event yields of the Intermediate $Wh$ SRs in models of the production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ decaying via $Wh$. All yields correspond to weighted events, so that effects from reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalised to the integrated luminosity of the data sample, $\int L dt = 139$ fb$^{-1}$. The preliminary event reduction is a centralised stage requiring the event to: have one single lepton and two hadronically decaying medium taus; be selected and matched by the single lepton trigger with plateau cuts.
Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>EWK SR distributions:</b> <a href="116034?version=1&table=Figure 11a">SR-High_8-EWK</a>; <a href="116034?version=1&table=Figure 11b">SR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 11c">SR-Int-EWK</a>; <a href="116034?version=1&table=Figure 11d">SR-Low-EWK</a>; <a href="116034?version=1&table=Figure 11e">SR-OffShell-EWK</a><br/><br/> <b>Strong SR distributions:</b> <a href="116034?version=1&table=Figure 13a">SRC-STR</a>; <a href="116034?version=1&table=Figure 13b">SRLow-STR</a>; <a href="116034?version=1&table=Figure 13c">SRMed-STR</a>; <a href="116034?version=1&table=Figure 13d">SRHigh-STR</a><br/><br/> <b>RJR SR Yields:</b> <a href="116034?version=1&table=Table 16">SR2l-Low-RJR, SR2l-ISR-RJR</a><br/><br/> <b>EWK SR Yields:</b> <a href="116034?version=1&table=Table 18">SR-High_16a-EWK, SR-High_8a-EWK, SR-1J-High-EWK, SR-ℓℓ𝑏𝑏-EWK, SR-High_16b-EWK, SR-High_8b-EWK</a>; <a href="116034?version=1&table=Table 19">SR-Int_a-EWK, SR-Low_a-EWK, SR-Low-2-EWK, SR-OffShell_a-EWK, SR-Int_b-EWK, SR-Low_b-EWK, SR-OffShell_b-EWK </a><br/><br/> <b>Strong SR Yields:</b> <a href="116034?version=1&table=Table 21">SRC-STR, SRLow-STR, SRMed-STR, SRHigh-STR</a>; <a href="116034?version=1&table=Table 22">SRZLow-STR, SRZMed-STR, SRZHigh-STR</a><br/><br/> <b>C1N2 Model Limits:</b> <a href="116034?version=1&table=Table 15a C1N2 Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15a C1N2 Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34a C1N2 Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>GMSB Model Limits:</b> <a href="116034?version=1&table=Table 15b GMSB Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15b GMSB Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34b GMSB Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Slepton Model Limits:</b> <a href="116034?version=1&table=Figure 16a Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16a Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23a XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16b Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16b Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23b XS Upper Limit">Upper Limits</a><br/><br/> <b>Squark-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16c Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16c Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23c XS Upper Limit">Upper Limits</a><br/><br/> <b>EWK VR distributions:</b> <a href="116034?version=1&table=Figure 4a S_ETmiss in VR-High-Sideband-EWK">VR-High-Sideband-EWK</a>; <a href="116034?version=1&table=Figure 4b S_Etmiss in VR-High-R-EWK">VR-High-R-EWK</a>; <a href="116034?version=1&table=Figure 4c S_Etmiss in VR-1J-High-EWK">VR-1J-High-EWK</a>; <a href="116034?version=1&table=Figure 4d S_Etmiss in VR-llbb-EWK">VR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 5a S_Etmiss in VR-Int-EWK">VR-Int-EWK</a>; <a href="116034?version=1&table=Figure 5b S_Etmiss in VR-Low-EWK">VR-Low-EWK</a>; <a href="116034?version=1&table=Figure 5c S_Etmiss in VR-Low-2-EWK">VR-Low-2-EWK</a>; <a href="116034?version=1&table=Figure 5d S_Etmiss in VR-OffShell-EWK">VR-OffShell-EWK</a><br/><br/> <b>Strong VR distributions:</b> <a href="116034?version=1&table=Figure 6a">VRC-STR</a>; <a href="116034?version=1&table=Figure 6b">VRLow-STR</a>; <a href="116034?version=1&table=Figure 6c">VRMed-STR</a>; <a href="116034?version=1&table=Figure 6d">VRHigh-STR</a>; <a href="116034?version=1&table=Figure 8">VR3L-STR</a><br/><br/> <b>Other Strong distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 17a">SRLow-STR + VRLow-STR</a><br/><br/> <b>Other EWK distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 33a Mjj in CR-Z-EWK and SR-Low-EWK">CR-Z-EWK + SR-Low-EWK</a>; <a href="116034?version=1&table=Auxiliary Figure 33b S_ETmiss in CR-Z-met-EWK">CR-Z-met-EWK</a><br/><br/> <b>Strong Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 30-31 SRC-STR Cutflow">SRC-STR GG_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRMed-STR Cutflow">SRC-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRLow-STR Cutflow">SRLow-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRHigh-STR Cutflow">SRC-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZLow-STR Cutflow">SRZLow-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZMed-STR Cutflow">SRZMed-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZHigh-STR Cutflow">SRZHigh-STR SS_N2_ZN1</a><br/><br/> <b>EWK Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Cutflow"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Cutflow"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Cutflow"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Cutflow"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Cutflow"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Cutflow"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Cutflow"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Cutflow"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Cutflow"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Cutflow"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Cutflow"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Cutflow"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Cutflow"> SR-llbb-EWK</a><br/><br/> <b>EWK Signal Number of MC Events:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Generated"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Generated"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Generated"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Generated"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Generated"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Generated"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Generated"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Generated"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Generated"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Generated"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Generated"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Generated"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Generated"> SR-llbb-EWK</a><br/><br/> <b>SRC-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SRC-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SR-OffShell_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in C1N2 acc in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in C1N2 acc in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in C1N2 eff in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in C1N2 eff in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>Truth Code snippets</b>, <b>SLHA files</b>, and <b>PYHF json likelihoods</b> are available under "Resources" (purple button on the left) ---- Record created with hepdata_lib 0.7.0: https://zenodo.org/record/4946277 and PYHF: https://doi.org/10.5281/zenodo.1169739
Breakdown of expected and observed yields in the two recursive-jigsaw reconstruction signal regions after a simultaneous fit of the the CRs. The two sets of regions are fit separately. The uncertainties include both statistical and systematic sources.
Breakdown of expected and observed yields in the electroweak search High and $\ell\ell bb$ signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the electroweak search Int, Low, and OffShell signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the four edge signal regions, integrated over the $m_{\ell\ell}$ distribution after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Breakdown of expected and observed yields in the three on-$Z$ signal regions after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected dilepton mass distributions in VR3L-STR without a fit to the data. The 'Other' category includes the negligible contributions from $t\bar{t}$ and $Z/\gamma^*$+jets processes. The hatched band contains the statistical uncertainty and the theoretical systematic uncertainties of the $WZ$/$ZZ$ prediction, which are the dominant sources of uncertainty. No fit is performed. The last bin contains the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95\% CLs upper limit on the cross section.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95$\%$ CLs upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
The combined $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution of VRLow-STR and SRLow-STR (left), and the same region with the $\Delta\phi(\boldsymbol{j}_{1,2},\boldsymbol{\mathit{p}}_{ ext{T}}^{ ext{miss}})<0.4$ requirement, used as a control region to normalize the $Z/\gamma^*+\mathrm{jets}$ process (right). Separate fits for the SR and VR are performed, as for the results in the paper, and the resulting distributions are merged. All statistical and systematic uncertainties are included in the hatched bands. The last bins contain the overflow.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
Measurements of $ZZ$ production in the $\ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 $\mathrm{fb}^{-1}$ of collisions collected by the ATLAS experiment in 2015 and 2016. Here $\ell$ and $\ell'$ stand for electrons or muons. Integrated and differential $ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross sections with $Z \to \ell^+\ell^-$ candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all Standard-Model decays of $Z$ bosons with mass between 66 GeV and 116 GeV, resulting in a value of $17.3 \pm 0.9$ [$\pm 0.6$ (stat.) $\pm 0.5$ (syst.) $\pm 0.6$ (lumi.)] pb. The measurements are found to be in good agreement with the Standard-Model predictions. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading $Z$-boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.
Integrated fiducial cross sections. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Differential fiducial cross section as function of the transverse momentum of the four-lepton system. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the four-lepton system.
Observed data events as function of the transverse momentum of the four-lepton system.
Response matrix for the transverse momentum of the four-lepton system.
Correlation matrix of cross section uncertainties for the transverse momentum of the four-lepton system., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the four-lepton system., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the leading Z candidate. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the leading Z candidate.
Observed data events as function of the transverse momentum of the leading Z candidate.
Response matrix for the transverse momentum of the leading Z candidate.
Correlation matrix of cross section uncertainties for the transverse momentum of the leading Z candidate., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the leading Z candidate., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the subleading Z candidate. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the subleading Z candidate.
Observed data events as function of the transverse momentum of the subleading Z candidate.
Response matrix for the transverse momentum of the subleading Z candidate.
Correlation matrix of cross section uncertainties for the transverse momentum of the subleading Z candidate., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the subleading Z candidate., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the 1. lepton. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the 1. lepton.
Observed data events as function of the transverse momentum of the 1. lepton.
Response matrix for the transverse momentum of the 1. lepton.
Correlation matrix of cross section uncertainties for the transverse momentum of the 1. lepton., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the 1. lepton., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the 2. lepton. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the 2. lepton.
Observed data events as function of the transverse momentum of the 2. lepton.
Response matrix for the transverse momentum of the 2. lepton.
Correlation matrix of cross section uncertainties for the transverse momentum of the 2. lepton., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the 2. lepton., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the 3. lepton. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the 3. lepton.
Observed data events as function of the transverse momentum of the 3. lepton.
Response matrix for the transverse momentum of the 3. lepton.
Correlation matrix of cross section uncertainties for the transverse momentum of the 3. lepton., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the 3. lepton., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the 4. lepton. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the 4. lepton.
Observed data events as function of the transverse momentum of the 4. lepton.
Response matrix for the transverse momentum of the 4. lepton.
Correlation matrix of cross section uncertainties for the transverse momentum of the 4. lepton., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the 4. lepton., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the absolute rapidity of the four-lepton system. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the absolute rapidity of the four-lepton system.
Observed data events as function of the absolute rapidity of the four-lepton system.
Response matrix for the absolute rapidity of the four-lepton system.
Correlation matrix of cross section uncertainties for the absolute rapidity of the four-lepton system., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the absolute rapidity of the four-lepton system., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the Rapidity separation of the Z candidates. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the Rapidity separation of the Z candidates.
Observed data events as function of the Rapidity separation of the Z candidates.
Response matrix for the Rapidity separation of the Z candidates.
Correlation matrix of cross section uncertainties for the Rapidity separation of the Z candidates., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the Rapidity separation of the Z candidates., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the azimuthal-angle separation of the Z candidates. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the azimuthal-angle separation of the Z candidates.
Observed data events as function of the azimuthal-angle separation of the Z candidates.
Response matrix for the azimuthal-angle separation of the Z candidates.
Correlation matrix of cross section uncertainties for the azimuthal-angle separation of the Z candidates., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the azimuthal-angle separation of the Z candidates., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the jet multiplicity. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the jet multiplicity.
Observed data events as function of the jet multiplicity.
Response matrix for the jet multiplicity.
Correlation matrix of cross section uncertainties for the jet multiplicity., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the jet multiplicity., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the central-jet multiplicity. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the central-jet multiplicity.
Observed data events as function of the central-jet multiplicity.
Response matrix for the central-jet multiplicity.
Correlation matrix of cross section uncertainties for the central-jet multiplicity., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the central-jet multiplicity., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the multiplicity of jets with pT > 60 GeV. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the multiplicity of jets with pT > 60 GeV.
Observed data events as function of the multiplicity of jets with pT > 60 GeV.
Response matrix for the multiplicity of jets with pT > 60 GeV.
Correlation matrix of cross section uncertainties for the multiplicity of jets with pT > 60 GeV., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the multiplicity of jets with pT > 60 GeV., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the mass of dijet formed of the two leading jets. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the mass of dijet formed of the two leading jets.
Observed data events as function of the mass of dijet formed of the two leading jets.
Response matrix for the mass of dijet formed of the two leading jets.
Correlation matrix of cross section uncertainties for the mass of dijet formed of the two leading jets., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the mass of dijet formed of the two leading jets., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the rapidity separation of the two leading jets. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the rapidity separation of the two leading jets.
Observed data events as function of the rapidity separation of the two leading jets.
Response matrix for the rapidity separation of the two leading jets.
Correlation matrix of cross section uncertainties for the rapidity separation of the two leading jets., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the rapidity separation of the two leading jets., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the scalar transverse-momentum sum of jets. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the scalar transverse-momentum sum of jets.
Observed data events as function of the scalar transverse-momentum sum of jets.
Response matrix for the scalar transverse-momentum sum of jets.
Correlation matrix of cross section uncertainties for the scalar transverse-momentum sum of jets., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the scalar transverse-momentum sum of jets., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the absolute pseudorapitidy of the 1. jet. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the absolute pseudorapitidy of the 1. jet.
Observed data events as function of the absolute pseudorapitidy of the 1. jet.
Response matrix for the absolute pseudorapitidy of the 1. jet.
Correlation matrix of cross section uncertainties for the absolute pseudorapitidy of the 1. jet., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the absolute pseudorapitidy of the 1. jet., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the absolute pseudorapitidy of the 2. jet.
Predicted background as function of the absolute pseudorapitidy of the 2. jet.
Observed data events as function of the absolute pseudorapitidy of the 2. jet.
Response matrix for the absolute pseudorapitidy of the 2. jet.
Correlation matrix of cross section uncertainties for the absolute pseudorapitidy of the 2. jet., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the absolute pseudorapitidy of the 2. jet., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the 1. jet. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the 1. jet.
Observed data events as function of the transverse momentum of the 1. jet.
Response matrix for the transverse momentum of the 1. jet.
Correlation matrix of cross section uncertainties for the transverse momentum of the 1. jet., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the 1. jet., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
Differential fiducial cross section as function of the transverse momentum of the 2. jet. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.
Predicted background as function of the transverse momentum of the 2. jet.
Observed data events as function of the transverse momentum of the 2. jet.
Response matrix for the transverse momentum of the 2. jet.
Correlation matrix of cross section uncertainties for the transverse momentum of the 2. jet., considering only correlations of the statistical uncertainty of the data. The correlations are given between bins of the unfolded cross section
Correlation matrix of cross section uncertainties for the transverse momentum of the 2. jet., considering correlations of both the statistical uncertainty of the data and systematic uncertainties entering via background subtraction and unfolding. The correlations are given between bins of the unfolded cross section
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.