Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.
The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.
The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.
A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions.
Centrality dependence of $\langle \cos[4(\Psi_{4}-\Psi_{2})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Centrality dependence of $\langle \cos[6(\Psi_{6}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Centrality dependence of $\langle \cos[6(\Psi_{2}-\Psi_{3})]\rangle_{\mathrm{GE}}$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.
Two-particle correlations are presented for K$^0_\mathrm{S}$, $\Lambda$, and $\overline\Lambda$ strange hadrons as a function of relative momentum in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The dataset corresponds to an integrated luminosity of 0.607 nb$^{-1}$ and was collected using the CMS detector at the CERN LHC. These correlations are sensitive to quantum statistics and to final-state interactions between the particles. The source size extracted from the K$^0_\mathrm{S}$K$^0_\mathrm{S}$ correlations is found to decrease from 4.6 to 1.6 fm in going from central to peripheral collisions. Strong interaction scattering parameters (i.e., scattering length and effective range) are determined from the $\Lambda$K$^0_\mathrm{S}$ and $\Lambda\Lambda$ (including their charge conjugates) correlations using the Lednick$\'y$-Lyuboshitz model and are compared to theoretical and other experimental results.
The $K^{0}_{S}$ Invariant mass in $0-80\%$ centrality,
The $\Lambda (\overline{\Lambda})$ Invariant mass in $0-80\%$ centrality.
$K^{0}_{S} K^{0}_{S}$ correlation meassurement in $0-10\%$ centrality.
The azimuthal anisotropy of particles associated with jets (jet particles) at midrapidity is measured for the first time in p-Pb and Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV down to transverse momentum ($p_{\rm T}$) of 0.5 GeV/$c$ and 2 GeV/$c$, respectively, with ALICE. The results obtained in p-Pb collisions are based on a novel three-particle correlation technique. The azimuthal anisotropy coefficient $v_2$ in high-multiplicity p-Pb collisions is positive, with a significance reaching 6.8$\sigma$ at low $p_{\rm T}$, and its magnitude is smaller than in semicentral Pb-Pb collisions. In contrast to the measurements in Pb-Pb collisions, the $v_2$ coefficient is also found independent of $p_{\rm T}$ within uncertainties. Comparisons with the inclusive charged-particle $v_2$ and with AMPT calculations are discussed. The predictions suggest that parton interactions play an important role in generating a non-zero jet-particle $v_2$ in p-Pb collisions, even though they overestimate the reported measurement. These observations shed new insights on the understanding of the origin of the collective behaviour of jet particles in small systems such as p-Pb collisions, and provide significant stringent new constraints to models.
Inclusive charged-particle $v_{2}$ as a function of $p_{\mathrm{T}}$ in high-multiplicity (0$-$10%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV
Jet-particle $v_{2}$ as a function of $p_{\mathrm{T}}$ in high-multiplicity (0$-$10%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, the $p_{\mathrm{T}}$ of associated particles is larger than 0.5 GeV/$\it{c}$
Jet-particle $v_{2}$ as a function of $p_{\mathrm{T}}$ in high-multiplicity (0$-$10%) p$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, the $p_{\mathrm{T}}$ of associated particles is larger than 1 GeV/$\it{c}$
This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.
- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i> <a href="?version=1&table=Table1">for p+Pb</a> <a href="?version=1&table=Table10">for Pb+Pb</a> <a href="?version=1&table=Table19">for Xe+Xe</a> <br><i>p+Pb:</i> <a href="?version=1&table=Table2">0-5%</a> <a href="?version=1&table=Table3">5-10%</a> <a href="?version=1&table=Table4">10-20%</a> <a href="?version=1&table=Table5">20-30%</a> <a href="?version=1&table=Table6">30-40%</a> <a href="?version=1&table=Table7">40-60%</a> <a href="?version=1&table=Table8">60-90%</a> <a href="?version=1&table=Table9">0-90%</a> <br><i>Pb+Pb:</i> <a href="?version=1&table=Table11">0-5%</a> <a href="?version=1&table=Table12">5-10%</a> <a href="?version=1&table=Table13">10-20%</a> <a href="?version=1&table=Table14">20-30%</a> <a href="?version=1&table=Table15">30-40%</a> <a href="?version=1&table=Table16">40-50%</a> <a href="?version=1&table=Table17">50-60%</a> <a href="?version=1&table=Table18">60-80%</a> <br><i>Xe+Xe:</i> <a href="?version=1&table=Table20">0-5%</a> <a href="?version=1&table=Table21">5-10%</a> <a href="?version=1&table=Table22">10-20%</a> <a href="?version=1&table=Table23">20-30%</a> <a href="?version=1&table=Table24">30-40%</a> <a href="?version=1&table=Table25">40-50%</a> <a href="?version=1&table=Table26">50-60%</a> <a href="?version=1&table=Table27">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i> <a href="?version=1&table=Table28">0-5%</a> <a href="?version=1&table=Table29">5-10%</a> <a href="?version=1&table=Table30">10-20%</a> <a href="?version=1&table=Table31">20-30%</a> <a href="?version=1&table=Table32">30-40%</a> <a href="?version=1&table=Table33">40-60%</a> <a href="?version=1&table=Table34">60-90%</a> <a href="?version=1&table=Table35">0-90%</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <a href="?version=1&table=Table36">0-5%</a> <a href="?version=1&table=Table37">5-10%</a> <a href="?version=1&table=Table38">10-20%</a> <a href="?version=1&table=Table39">20-30%</a> <a href="?version=1&table=Table40">30-40%</a> <a href="?version=1&table=Table41">40-50%</a> <a href="?version=1&table=Table42">50-60%</a> <a href="?version=1&table=Table43">60-80%</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <a href="?version=1&table=Table44">0-5%</a> <a href="?version=1&table=Table45">5-10%</a> <a href="?version=1&table=Table46">10-20%</a> <a href="?version=1&table=Table47">20-30%</a> <a href="?version=1&table=Table48">30-40%</a> <a href="?version=1&table=Table49">40-50%</a> <a href="?version=1&table=Table50">50-60%</a> <a href="?version=1&table=Table51">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br> 0-5%: <a href="?version=1&table=Table52">0.66-0.755GeV</a> <a href="?version=1&table=Table53">2.95-3.35GeV</a> <a href="?version=1&table=Table54">7.65-8.8GeV</a> <a href="?version=1&table=Table55">15.1-17.3GeV</a> <br> 5-10%: <a href="?version=1&table=Table56">0.66-0.755GeV</a> <a href="?version=1&table=Table57">2.95-3.35GeV</a> <a href="?version=1&table=Table58">7.65-8.8GeV</a> <a href="?version=1&table=Table59">15.1-17.3GeV</a> <br> 10-20%: <a href="?version=1&table=Table60">0.66-0.755GeV</a> <a href="?version=1&table=Table61">2.95-3.35GeV</a> <a href="?version=1&table=Table62">7.65-8.8GeV</a> <a href="?version=1&table=Table63">15.1-17.3GeV</a> <br> 20-30%: <a href="?version=1&table=Table64">0.66-0.755GeV</a> <a href="?version=1&table=Table65">2.95-3.35GeV</a> <a href="?version=1&table=Table66">7.65-8.8GeV</a> <a href="?version=1&table=Table67">15.1-17.3GeV</a> <br> 30-40%: <a href="?version=1&table=Table68">0.66-0.755GeV</a> <a href="?version=1&table=Table69">2.95-3.35GeV</a> <a href="?version=1&table=Table70">7.65-8.8GeV</a> <a href="?version=1&table=Table71">15.1-17.3GeV</a> <br> 40-60%: <a href="?version=1&table=Table72">0.66-0.755GeV</a> <a href="?version=1&table=Table73">2.95-3.35GeV</a> <a href="?version=1&table=Table74">7.65-8.8GeV</a> <a href="?version=1&table=Table75">15.1-17.3GeV</a> <br> 60-90%: <a href="?version=1&table=Table76">0.66-0.755GeV</a> <a href="?version=1&table=Table77">2.95-3.35GeV</a> <a href="?version=1&table=Table78">7.65-8.8GeV</a> <a href="?version=1&table=Table79">15.1-17.3GeV</a> <br> 0-90%: <a href="?version=1&table=Table80">0.66-0.755GeV</a> <a href="?version=1&table=Table81">2.95-3.35GeV</a> <a href="?version=1&table=Table82">7.65-8.8GeV</a> <a href="?version=1&table=Table83">15.1-17.3GeV</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br> 0-5%: <a href="?version=1&table=Table84">1.7-1.95GeV</a> <a href="?version=1&table=Table85">6.7-7.65GeV</a> <a href="?version=1&table=Table86">20-23GeV</a> <a href="?version=1&table=Table87">60-95GeV</a> <br> 5-10%: <a href="?version=1&table=Table88">1.7-1.95GeV</a> <a href="?version=1&table=Table89">6.7-7.65GeV</a> <a href="?version=1&table=Table90">20-23GeV</a> <a href="?version=1&table=Table91">60-95GeV</a> <br> 10-20%: <a href="?version=1&table=Table92">1.7-1.95GeV</a> <a href="?version=1&table=Table93">6.7-7.65GeV</a> <a href="?version=1&table=Table94">20-23GeV</a> <a href="?version=1&table=Table95">60-95GeV</a> <br> 20-30%: <a href="?version=1&table=Table96">1.7-1.95GeV</a> <a href="?version=1&table=Table97">6.7-7.65GeV</a> <a href="?version=1&table=Table98">20-23GeV</a> <a href="?version=1&table=Table99">60-95GeV</a> <br> 30-40%: <a href="?version=1&table=Table100">1.7-1.95GeV</a> <a href="?version=1&table=Table101">6.7-7.65GeV</a> <a href="?version=1&table=Table102">20-23GeV</a> <a href="?version=1&table=Table103">60-95GeV</a> <br> 40-50%: <a href="?version=1&table=Table104">1.7-1.95GeV</a> <a href="?version=1&table=Table105">6.7-7.65GeV</a> <a href="?version=1&table=Table106">20-23GeV</a> <a href="?version=1&table=Table107">60-95GeV</a> <br> 50-60%: <a href="?version=1&table=Table108">1.7-1.95GeV</a> <a href="?version=1&table=Table109">6.7-7.65GeV</a> <a href="?version=1&table=Table110">20-23GeV</a> <a href="?version=1&table=Table111">60-95GeV</a> <br> 60-80%: <a href="?version=1&table=Table112">1.7-1.95GeV</a> <a href="?version=1&table=Table113">6.7-7.65GeV</a> <a href="?version=1&table=Table114">20-23GeV</a> <a href="?version=1&table=Table115">60-95GeV</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br> 0-5%: <a href="?version=1&table=Table116">1.7-1.95GeV</a> <a href="?version=1&table=Table117">6.7-7.65GeV</a> <a href="?version=1&table=Table118">20-23GeV</a> <br> 5-10%: <a href="?version=1&table=Table119">1.7-1.95GeV</a> <a href="?version=1&table=Table120">6.7-7.65GeV</a> <a href="?version=1&table=Table121">20-23GeV</a> <br> 10-20%: <a href="?version=1&table=Table122">1.7-1.95GeV</a> <a href="?version=1&table=Table123">6.7-7.65GeV</a> <a href="?version=1&table=Table124">20-23GeV</a> <br> 20-30%: <a href="?version=1&table=Table125">1.7-1.95GeV</a> <a href="?version=1&table=Table126">6.7-7.65GeV</a> <a href="?version=1&table=Table127">20-23GeV</a> <br> 30-40%: <a href="?version=1&table=Table128">1.7-1.95GeV</a> <a href="?version=1&table=Table129">6.7-7.65GeV</a> <a href="?version=1&table=Table130">20-23GeV</a> <br> 40-50%: <a href="?version=1&table=Table131">1.7-1.95GeV</a> <a href="?version=1&table=Table132">6.7-7.65GeV</a> <a href="?version=1&table=Table133">20-23GeV</a> <br> 50-60%: <a href="?version=1&table=Table134">1.7-1.95GeV</a> <a href="?version=1&table=Table135">6.7-7.65GeV</a> <a href="?version=1&table=Table136">20-23GeV</a> <br> 60-80%: <a href="?version=1&table=Table137">1.7-1.95GeV</a> <a href="?version=1&table=Table138">6.7-7.65GeV</a> <a href="?version=1&table=Table139">20-23GeV</a> <br>- - - - - - - - - - - - - - - - - - - -
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Multiplicity ($N_{\rm ch}$) distributions and transverse momentum ($p_{\rm T}$) spectra of inclusive primary charged particles in the kinematic range of $|\eta| < 0.8$ and 0.15 GeV/$c$$< p_{T} <$ 10 GeV/$c$ are reported for pp, p-Pb, Xe-Xe and Pb-Pb collisions at centre-of-mass energies per nucleon pair ranging from $\sqrt{s_{\rm NN}} = 2.76$ TeV up to $13$ TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the $p_{\rm T}$ spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
Koba-Nielsen-Olesen scaled charged-particle multiplicity distribution for pp collisions at 2.76 TeV.
The pseudorapidity density of charged particles with minimum transverse momentum ($p_{\rm T}$) thresholds of 0.15, 0.5, 1, and 2 GeV$/c$ is measured in pp collisions at the centre of mass energies of $\sqrt{s} =$ 5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity ($\eta$) within $\pm0.8$ and $p_{\rm T}$ larger than the corresponding threshold. In addition, measurements without $p_{\rm T}$-thresholds are performed for inelastic and non-single-diffractive events as well as for inelastic events with at least one charged particle having $|\eta|<1$ in pp collisions at $\sqrt{s} =$ 5.02 TeV for the first time at the LHC. These measurements are compared to the PYTHIA 6, PYTHIA 8, and EPOS-LHC models. In general, the models describe the $\eta$ dependence of particle production well. However, discrepancies are observed for the highest transverse momentum threshold ($p_{\rm T}>2 {\rm\ GeV}/c$), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at $\sqrt{s} = 13$ TeV.
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for NSD event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL>0 event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The measurement of the production of deuterons, tritons and $^{3}\mathrm{He}$ and their antiparticles in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is presented in this article. The measurements are carried out at midrapidity ($|y| < $ 0.5) as a function of collision centrality using the ALICE detector. The $p_{\rm T}$-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different centre-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities.
Deuteron spectrum in 0-5% V0M centrality class
Antideuteron spectrum in 0-5% V0M centrality class
Deuteron spectrum in 5-10% V0M centrality class
The production of electrons from beauty-hadron decays was measured at midrapidity in proton-proton (pp) and central Pb-Pb collisions at center-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV, using the ALICE detector at the LHC. The cross section measured in pp collisions in the transverse momentum interval $2 < p_{\rm T} < 8$ GeV/$c$ was compared with models based on perturbative quantum chromodynamics calculations. The yield in the 10% most central Pb-Pb collisions, measured in the interval $2 < p_{\rm T} < 26$ GeV/$c$, was used to compute the nuclear modification factor $R_{\rm AA}$, extrapolating the pp reference cross section to $p_{\rm T}$ larger than 8 GeV/$c$. The measured $R_{\rm AA}$ shows significant suppression of the yield of electrons from beauty-hadron decays at high $p_{\rm T}$ and does not show a significant dependence on $p_{\rm T}$ above 8 GeV/$c$ within uncertainties. The results are described by several theoretical models based on different implementations of the interaction of heavy quarks with a quark-gluon plasma, which predict a smaller energy loss for beauty quarks compared to light and charm quarks.
$p_{T}$-differential cross section of electrons from beauty-hadron decays in pp collisions at $\sqrt{s}=5.02$ TeV. The rapidity of electrons is |y| < 0.8.
Yield of beauty-hadron decay electrons in 0--10% central Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The rapidity of electrons for $p_{T} < 8$ GeV/c is |y| < 0.8 and |y| < 0.6 for $p_{T} > 8$ GeV/c.
The nuclear modification factor for beauty-hadron decay electrons in 0--10% central Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The rapidity of electrons for $p_{T} < 8$ GeV/c is |y| < 0.8 and |y| < 0.6 for $p_{T} > 8$ GeV/c.
The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}=5.02~\mathrm{TeV}$ in comparison with $pp$ collisions at $\sqrt{s}=5.02~\mathrm{TeV}$. The Pb+Pb data, collected in 2018, have an integrated luminosity of $1.72~\mathrm{nb^{-1}}$, while the $pp$ data, collected in 2017, have an integrated luminosity of $260~\mathrm{pb}^{-1}$. Jets used in this analysis are clustered using the anti-$k_{t}$ algorithm with a radius parameter $R=0.4$. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale $r_\mathrm{g}$ of the first hard splitting inside the jet by reclustering them using the Cambridge-Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, $R_\mathrm{AA}$, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in $r_\mathrm{g}$, jet transverse momentum, and in intervals of collision centrality. The $R_\mathrm{AA}$ value is observed to depend significantly on jet $r_\mathrm{g}$. Jets produced with the largest measured $r_\mathrm{g}$ are found to be twice as suppressed as those with the smallest $r_\mathrm{g}$ in central Pb+Pb collisions. The $R_\mathrm{AA}$ values do not exhibit a strong variation with jet $p_\mathrm{T}$ in any of the $r_\mathrm{g}$ intervals. The $r_\mathrm{g}$ and $p_\mathrm{T}$ dependence of jet $R_\mathrm{AA}$ is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach.
Summary of jet double differential cross section in pp collisions at 5.02 TeV as a function of pT in bins of rg. Uncertainties are statistical and systematic, respectively.
Summary of jet double differential cross section in pp collisions at 5.02 TeV as a function of rg in bins of pT. Uncertainties are statistical and systematic, respectively.
Summary of per-event jet yields in Pb+Pb collisions at 5.02 TeV as a function of pT in bins of rg for 50-80% centrality interval, normalized by the respective centrality interval's <TAA>. Uncertainties are statistical and systematic, respectively.