This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.
- - - - - - - - - - - - - - - - - - - - <br><b>charged-hadron spectra:</b> <br><i>pp reference:</i> <a href="?version=1&table=Table1">for p+Pb</a> <a href="?version=1&table=Table10">for Pb+Pb</a> <a href="?version=1&table=Table19">for Xe+Xe</a> <br><i>p+Pb:</i> <a href="?version=1&table=Table2">0-5%</a> <a href="?version=1&table=Table3">5-10%</a> <a href="?version=1&table=Table4">10-20%</a> <a href="?version=1&table=Table5">20-30%</a> <a href="?version=1&table=Table6">30-40%</a> <a href="?version=1&table=Table7">40-60%</a> <a href="?version=1&table=Table8">60-90%</a> <a href="?version=1&table=Table9">0-90%</a> <br><i>Pb+Pb:</i> <a href="?version=1&table=Table11">0-5%</a> <a href="?version=1&table=Table12">5-10%</a> <a href="?version=1&table=Table13">10-20%</a> <a href="?version=1&table=Table14">20-30%</a> <a href="?version=1&table=Table15">30-40%</a> <a href="?version=1&table=Table16">40-50%</a> <a href="?version=1&table=Table17">50-60%</a> <a href="?version=1&table=Table18">60-80%</a> <br><i>Xe+Xe:</i> <a href="?version=1&table=Table20">0-5%</a> <a href="?version=1&table=Table21">5-10%</a> <a href="?version=1&table=Table22">10-20%</a> <a href="?version=1&table=Table23">20-30%</a> <a href="?version=1&table=Table24">30-40%</a> <a href="?version=1&table=Table25">40-50%</a> <a href="?version=1&table=Table26">50-60%</a> <a href="?version=1&table=Table27">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (p<sub>T</sub>):</b> <br><i>R<sub>pPb</sub>:</i> <a href="?version=1&table=Table28">0-5%</a> <a href="?version=1&table=Table29">5-10%</a> <a href="?version=1&table=Table30">10-20%</a> <a href="?version=1&table=Table31">20-30%</a> <a href="?version=1&table=Table32">30-40%</a> <a href="?version=1&table=Table33">40-60%</a> <a href="?version=1&table=Table34">60-90%</a> <a href="?version=1&table=Table35">0-90%</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <a href="?version=1&table=Table36">0-5%</a> <a href="?version=1&table=Table37">5-10%</a> <a href="?version=1&table=Table38">10-20%</a> <a href="?version=1&table=Table39">20-30%</a> <a href="?version=1&table=Table40">30-40%</a> <a href="?version=1&table=Table41">40-50%</a> <a href="?version=1&table=Table42">50-60%</a> <a href="?version=1&table=Table43">60-80%</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <a href="?version=1&table=Table44">0-5%</a> <a href="?version=1&table=Table45">5-10%</a> <a href="?version=1&table=Table46">10-20%</a> <a href="?version=1&table=Table47">20-30%</a> <a href="?version=1&table=Table48">30-40%</a> <a href="?version=1&table=Table49">40-50%</a> <a href="?version=1&table=Table50">50-60%</a> <a href="?version=1&table=Table51">60-80%</a> </br>- - - - - - - - - - - - - - - - - - - - <br><b>nuclear modification factors (y*/eta):</b> <br><i>R<sub>pPb</sub>:</i> <br> 0-5%: <a href="?version=1&table=Table52">0.66-0.755GeV</a> <a href="?version=1&table=Table53">2.95-3.35GeV</a> <a href="?version=1&table=Table54">7.65-8.8GeV</a> <a href="?version=1&table=Table55">15.1-17.3GeV</a> <br> 5-10%: <a href="?version=1&table=Table56">0.66-0.755GeV</a> <a href="?version=1&table=Table57">2.95-3.35GeV</a> <a href="?version=1&table=Table58">7.65-8.8GeV</a> <a href="?version=1&table=Table59">15.1-17.3GeV</a> <br> 10-20%: <a href="?version=1&table=Table60">0.66-0.755GeV</a> <a href="?version=1&table=Table61">2.95-3.35GeV</a> <a href="?version=1&table=Table62">7.65-8.8GeV</a> <a href="?version=1&table=Table63">15.1-17.3GeV</a> <br> 20-30%: <a href="?version=1&table=Table64">0.66-0.755GeV</a> <a href="?version=1&table=Table65">2.95-3.35GeV</a> <a href="?version=1&table=Table66">7.65-8.8GeV</a> <a href="?version=1&table=Table67">15.1-17.3GeV</a> <br> 30-40%: <a href="?version=1&table=Table68">0.66-0.755GeV</a> <a href="?version=1&table=Table69">2.95-3.35GeV</a> <a href="?version=1&table=Table70">7.65-8.8GeV</a> <a href="?version=1&table=Table71">15.1-17.3GeV</a> <br> 40-60%: <a href="?version=1&table=Table72">0.66-0.755GeV</a> <a href="?version=1&table=Table73">2.95-3.35GeV</a> <a href="?version=1&table=Table74">7.65-8.8GeV</a> <a href="?version=1&table=Table75">15.1-17.3GeV</a> <br> 60-90%: <a href="?version=1&table=Table76">0.66-0.755GeV</a> <a href="?version=1&table=Table77">2.95-3.35GeV</a> <a href="?version=1&table=Table78">7.65-8.8GeV</a> <a href="?version=1&table=Table79">15.1-17.3GeV</a> <br> 0-90%: <a href="?version=1&table=Table80">0.66-0.755GeV</a> <a href="?version=1&table=Table81">2.95-3.35GeV</a> <a href="?version=1&table=Table82">7.65-8.8GeV</a> <a href="?version=1&table=Table83">15.1-17.3GeV</a> <br><i>R<sub>AA</sub> (Pb+Pb):</i> <br> 0-5%: <a href="?version=1&table=Table84">1.7-1.95GeV</a> <a href="?version=1&table=Table85">6.7-7.65GeV</a> <a href="?version=1&table=Table86">20-23GeV</a> <a href="?version=1&table=Table87">60-95GeV</a> <br> 5-10%: <a href="?version=1&table=Table88">1.7-1.95GeV</a> <a href="?version=1&table=Table89">6.7-7.65GeV</a> <a href="?version=1&table=Table90">20-23GeV</a> <a href="?version=1&table=Table91">60-95GeV</a> <br> 10-20%: <a href="?version=1&table=Table92">1.7-1.95GeV</a> <a href="?version=1&table=Table93">6.7-7.65GeV</a> <a href="?version=1&table=Table94">20-23GeV</a> <a href="?version=1&table=Table95">60-95GeV</a> <br> 20-30%: <a href="?version=1&table=Table96">1.7-1.95GeV</a> <a href="?version=1&table=Table97">6.7-7.65GeV</a> <a href="?version=1&table=Table98">20-23GeV</a> <a href="?version=1&table=Table99">60-95GeV</a> <br> 30-40%: <a href="?version=1&table=Table100">1.7-1.95GeV</a> <a href="?version=1&table=Table101">6.7-7.65GeV</a> <a href="?version=1&table=Table102">20-23GeV</a> <a href="?version=1&table=Table103">60-95GeV</a> <br> 40-50%: <a href="?version=1&table=Table104">1.7-1.95GeV</a> <a href="?version=1&table=Table105">6.7-7.65GeV</a> <a href="?version=1&table=Table106">20-23GeV</a> <a href="?version=1&table=Table107">60-95GeV</a> <br> 50-60%: <a href="?version=1&table=Table108">1.7-1.95GeV</a> <a href="?version=1&table=Table109">6.7-7.65GeV</a> <a href="?version=1&table=Table110">20-23GeV</a> <a href="?version=1&table=Table111">60-95GeV</a> <br> 60-80%: <a href="?version=1&table=Table112">1.7-1.95GeV</a> <a href="?version=1&table=Table113">6.7-7.65GeV</a> <a href="?version=1&table=Table114">20-23GeV</a> <a href="?version=1&table=Table115">60-95GeV</a> <br><i>R<sub>AA</sub> (Xe+Xe):</i> <br> 0-5%: <a href="?version=1&table=Table116">1.7-1.95GeV</a> <a href="?version=1&table=Table117">6.7-7.65GeV</a> <a href="?version=1&table=Table118">20-23GeV</a> <br> 5-10%: <a href="?version=1&table=Table119">1.7-1.95GeV</a> <a href="?version=1&table=Table120">6.7-7.65GeV</a> <a href="?version=1&table=Table121">20-23GeV</a> <br> 10-20%: <a href="?version=1&table=Table122">1.7-1.95GeV</a> <a href="?version=1&table=Table123">6.7-7.65GeV</a> <a href="?version=1&table=Table124">20-23GeV</a> <br> 20-30%: <a href="?version=1&table=Table125">1.7-1.95GeV</a> <a href="?version=1&table=Table126">6.7-7.65GeV</a> <a href="?version=1&table=Table127">20-23GeV</a> <br> 30-40%: <a href="?version=1&table=Table128">1.7-1.95GeV</a> <a href="?version=1&table=Table129">6.7-7.65GeV</a> <a href="?version=1&table=Table130">20-23GeV</a> <br> 40-50%: <a href="?version=1&table=Table131">1.7-1.95GeV</a> <a href="?version=1&table=Table132">6.7-7.65GeV</a> <a href="?version=1&table=Table133">20-23GeV</a> <br> 50-60%: <a href="?version=1&table=Table134">1.7-1.95GeV</a> <a href="?version=1&table=Table135">6.7-7.65GeV</a> <a href="?version=1&table=Table136">20-23GeV</a> <br> 60-80%: <a href="?version=1&table=Table137">1.7-1.95GeV</a> <a href="?version=1&table=Table138">6.7-7.65GeV</a> <a href="?version=1&table=Table139">20-23GeV</a> <br>- - - - - - - - - - - - - - - - - - - -
Charged-hadron cross-section in pp collisions. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
Charged-hadron spectrum in the centrality interval 0-5% for p+Pb, divided by 〈TPPB〉. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.
The pseudorapidity density of charged particles with minimum transverse momentum ($p_{\rm T}$) thresholds of 0.15, 0.5, 1, and 2 GeV$/c$ is measured in pp collisions at the centre of mass energies of $\sqrt{s} =$ 5.02 and 13 TeV with the ALICE detector. The study is carried out for inelastic collisions with at least one primary charged particle having a pseudorapidity ($\eta$) within $\pm0.8$ and $p_{\rm T}$ larger than the corresponding threshold. In addition, measurements without $p_{\rm T}$-thresholds are performed for inelastic and non-single-diffractive events as well as for inelastic events with at least one charged particle having $|\eta|<1$ in pp collisions at $\sqrt{s} =$ 5.02 TeV for the first time at the LHC. These measurements are compared to the PYTHIA 6, PYTHIA 8, and EPOS-LHC models. In general, the models describe the $\eta$ dependence of particle production well. However, discrepancies are observed for the highest transverse momentum threshold ($p_{\rm T}>2 {\rm\ GeV}/c$), highlighting the importance of such measurements for tuning event generators. The new measurements agree within uncertainties with results from the ATLAS and CMS experiments obtained at $\sqrt{s} = 13$ TeV.
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for NSD event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The distributions of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ for INEL>0 event classes in pp collisions at $\sqrt{s} = 5.02$ TeV
The production of inclusive, prompt and non-prompt J/$\psi$ was studied for the first time at midrapidity ($ -1.37 < y_{\rm cms} < 0.43$) in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV with the ALICE detector at the LHC. The inclusive J/$\psi$ mesons were reconstructed in the dielectron decay channel in the transverse momentum ($p_{\rm T}$) interval $0 < p_{\rm T} < 14$ GeV/$c$ and the prompt and non-prompt contributions were separated on a statistical basis for $p_{\rm T} > 2$ GeV/$c$. The study of the J/$\psi$ mesons in the dielectron channel used for the first time in ALICE online single-electron triggers from the Transition Radiation Detector, providing a data sample corresponding to an integrated luminosity of $689 \pm 13 \mu{\rm b}^{-1}$. The proton$-$proton reference cross section for inclusive J/$\psi$ was obtained based on interpolations of measured data at different centre-of-mass energies and a universal function describing the $p_{\rm T}$-differential J/$\psi$ production cross sections. The $p_{\rm T}$-differential nuclear modification factors $R_{\rm pPb}$ of inclusive, prompt, and non-prompt J/$\psi$ are consistent with unity and described by theoretical models implementing only nuclear shadowing.
d$^2\sigma$/d$y$d$p_{\rm T}$ in bins of $p_{\mathrm{T}}^{J/\psi}$ for inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV.
Nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.
$p_\mathrm{T}$ integrated nuclear modification factor ($R_{pPb}$) of inclusive J/$\psi$ in p--Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV at midrapidity.
Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.
Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
The measurement of the production of deuterons, tritons and $^{3}\mathrm{He}$ and their antiparticles in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV is presented in this article. The measurements are carried out at midrapidity ($|y| < $ 0.5) as a function of collision centrality using the ALICE detector. The $p_{\rm T}$-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different centre-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities.
Deuteron spectrum in 0-5% V0M centrality class
Antideuteron spectrum in 0-5% V0M centrality class
Deuteron spectrum in 5-10% V0M centrality class
The production of electrons from beauty-hadron decays was measured at midrapidity in proton-proton (pp) and central Pb-Pb collisions at center-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}$ = 5.02 TeV, using the ALICE detector at the LHC. The cross section measured in pp collisions in the transverse momentum interval $2 < p_{\rm T} < 8$ GeV/$c$ was compared with models based on perturbative quantum chromodynamics calculations. The yield in the 10% most central Pb-Pb collisions, measured in the interval $2 < p_{\rm T} < 26$ GeV/$c$, was used to compute the nuclear modification factor $R_{\rm AA}$, extrapolating the pp reference cross section to $p_{\rm T}$ larger than 8 GeV/$c$. The measured $R_{\rm AA}$ shows significant suppression of the yield of electrons from beauty-hadron decays at high $p_{\rm T}$ and does not show a significant dependence on $p_{\rm T}$ above 8 GeV/$c$ within uncertainties. The results are described by several theoretical models based on different implementations of the interaction of heavy quarks with a quark-gluon plasma, which predict a smaller energy loss for beauty quarks compared to light and charm quarks.
$p_{T}$-differential cross section of electrons from beauty-hadron decays in pp collisions at $\sqrt{s}=5.02$ TeV. The rapidity of electrons is |y| < 0.8.
Yield of beauty-hadron decay electrons in 0--10% central Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The rapidity of electrons for $p_{T} < 8$ GeV/c is |y| < 0.8 and |y| < 0.6 for $p_{T} > 8$ GeV/c.
The nuclear modification factor for beauty-hadron decay electrons in 0--10% central Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02$ TeV. The rapidity of electrons for $p_{T} < 8$ GeV/c is |y| < 0.8 and |y| < 0.6 for $p_{T} > 8$ GeV/c.
This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=highst_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_dmtt_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR0L_mwtagged">0L region m(b1,W-tagged)</a> <li><a href="?table=SR0L_mtbmet">0L region m_{\mathrm{T}}^{\mathrm{b,E_{\mathrm{T}^{\mathrm{miss}}}}}</a> <li><a href="?table=SR0L_nwtagged">0L region N_{\mathrm{W-tagged}}</a> <li><a href="?table=SR1L_Had_mbj">1L hadronic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_mbj">1L leptonic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_nwtaggged">1L leptonic top region N_{\mathrm{W-tagged}}</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SR0L">Cutflow of 4 signal points in the 0L regions.</a> <li><a href="?table=cutflow_SR1L_Had">Cutflow of 4 signal points in the 1L hadronic top regions.</a> <li><a href="?table=cutflow_SR1L_Lep">Cutflow of 4 signal points in the 1L leptonic top region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>highst_grid1_0L:</b> <a href="?table=highst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_0L:</b> <a href="?table=highst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_0L:</b> <a href="?table=highst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>highst_grid1_1L:</b> <a href="?table=highst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_1L:</b> <a href="?table=highst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_1L:</b> <a href="?table=highst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_0L:</b> <a href="?table=lowst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_0L:</b> <a href="?table=lowst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_0L:</b> <a href="?table=lowst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_1L:</b> <a href="?table=lowst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_1L:</b> <a href="?table=lowst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_1L:</b> <a href="?table=lowst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)
The observed exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.
The expected exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.
The linear and mode-coupled contributions to higher-order anisotropic flow are presented for Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 27, 39, 54.4, and 200 GeV and compared to similar measurements for Pb+Pb collisions at the Large Hadron Collider (LHC). The coefficients and the flow harmonics' correlations, which characterize the linear and mode-coupled response to the lower-order anisotropies, indicate a beam energy dependence consistent with an influence from the specific shear viscosity ($\eta/s$). In contrast, the dimensionless coefficients, mode-coupled response coefficients, and normalized symmetric cumulants are approximately beam-energy independent, consistent with a significant role from initial-state effects. These measurements could provide unique supplemental constraints to (i) distinguish between different initial-state models and (ii) delineate the temperature ($T$) and baryon chemical potential ($\mu_{B}$) dependence of the specific shear viscosity $\frac{\eta}{s} (T, \mu_B)$.
Comparison of the integrated three-particle correlators for Au+Au collisions at 54.4 GeV.
Comparison of the integrated three-particle correlators for Au+Au collisions at 39.0 GeV.
Comparison of the integrated three-particle correlators for Au+Au collisions at 27.0 GeV.
Measurements of joint-polarisation states of $W$ and $Z$ gauge bosons in $W^{\pm}Z$ production are presented. The data set used corresponds to an integrated luminosity of $139$ fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The $W^{\pm}Z$ candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The simultaneous pair-production of longitudinally polarised vector bosons is measured for the first time with a significance of $7.1$ standard deviations. The measured joint helicity fractions integrated over the fiducial region are $f_{\mathrm{00}} = 0.067 \pm 0.010$, $f_{\mathrm{0T}} = 0.110 \pm 0.029$, $f_{\mathrm{T0}} = 0.179 \pm 0.023$ and $f_{\mathrm{TT}} = 0.644 \pm 0.032$, in agreement with the next-to-leading-order Standard Model predictions. Individual helicity fractions of the $W$ and $Z$ bosons are also measured and found to be consistent with joint helicity fractions within the expected amount of correlations. Both the joint and individual helicity fractions are also measured separately in $W^+Z$ and $W^-Z$ events. Inclusive and differential cross sections for several kinematic observables sensitive to polarisation are presented.
Measured fiducial Born-level cross section for a single leptonic decay channel $\ell'^\pm \nu \ell^+ \ell'^-$ of the $W$ and $Z$ bosons, where $\ell, \ell' = e, \mu$. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds and pileup. The last bin is a cross section for all events above the lower end of the bin.
Correlation matrix for the unfolded cross section.
Measured fiducial Born-level cross section for a single leptonic decay channel $\ell'^\pm \nu \ell^+ \ell'^-$ of the $W$ and $Z$ bosons, where $\ell, \ell' = e, \mu$. The relative uncertainties are reported as percentages. The systematic uncertainties are in order of appearance: total uncorrelated systematic and correlated systematics related respectively to unfolding, electrons, muons, jets, reducible and irreducible backgrounds and pileup. The last bin is a cross section for all events above the lower end of the bin.
The production of strange hadrons (K$^{0}_{\rm S}$, $\Lambda$, $\Xi^{\pm}$, and $\Omega^{\pm}$), baryon-to-meson ratios ($\Lambda/{\rm K}^0_{\rm S}$, $\Xi/{\rm K}^0_{\rm S }$, and $\Omega/{\rm K}^0_{\rm S}$), and baryon-to-baryon ratios ($\Xi/\Lambda$, $\Omega/\Lambda$, and $\Omega/\Xi$) associated with jets and the underlying event were measured as a function of transverse momentum ($p_{\rm T}$) in pp collisions at $\sqrt{s} = 13$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ALICE detector at the LHC. The inclusive production of the same particle species and the corresponding ratios are also reported. The production of multi-strange hadrons, $\Xi^{\pm}$ and $\Omega^{\pm}$, and their associated particle ratios in jets and in the underlying event are measured for the first time. In both pp and p-Pb collisions, the baryon-to-meson and baryon-to-baryon yield ratios measured in jets differ from the inclusive particle production for low and intermediate hadron $p_{\rm T}$ (0.6$-$6 GeV/$c$). Ratios measured in the underlying event are in turn similar to those measured for inclusive particle production. In pp collisions, the particle production in jets is compared with PYTHIA 8 predictions with three colour-reconnection implementation modes. None of them fully reproduces the data in the measured hadron $p_{\rm T}$ region. The maximum deviation is observed for $\Xi^{\pm}$ and $\Omega^{\pm}$, which reaches a factor of about six. In p-Pb collisions, there is no significant event-multiplicity dependence for particle production in jets, in contrast to what is observed in the underlying event. The presented measurements provide novel constraints on hadronisation and its Monte Carlo description. In particular, they demonstrate that the fragmentation of jets alone is insufficient to describe the strange and multi-strange particle production in hadronic collisions at LHC energies.
$p_{\rm T}$-differential density of inclusive ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in pp collisions at $\sqrt{s} = 13$ TeV.
$p_{\rm T}$-differential densities of ${\rm K}_{\rm S}^{0}$ and $\Lambda$ ($\overline{\Lambda}$) in jets and the underlying event in pp collisions at $\sqrt{s} = 13$ TeV.
$p_{\rm T}$-differential density of inclusive $\Xi^{\pm}$ in pp collisions at $\sqrt{s} = 13$ TeV.