We report the systematic measurement of protons and light nuclei production in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The transverse momentum ($p_{T}$) spectra of protons ($p$), deuterons ($d$), tritons ($t$), $^{3}\mathrm{He}$, and $^{4}\mathrm{He}$ are measured from mid-rapidity to target rapidity for different collision centralities. We present the rapidity and centrality dependence of particle yields ($dN/dy$), average transverse momentum ($\langle p_{T}\rangle$), yield ratios ($d/p$, $t/p$,$^{3}\mathrm{He}/p$, $^{4}\mathrm{He}/p$), as well as the coalescence parameters ($B_2$, $B_3$). The 4$\pi$ yields for various particles are determined by utilizing the measured rapidity distributions, $dN/dy$. Furthermore, we present the energy, centrality, and rapidity dependence of the compound yield ratios ($N_{p} \times N_{t} / N_{d}^{2}$) and compare them with various model calculations. The physics implications of those results on the production mechanism of light nuclei and on QCD phase structure are discussed.
Weak decay feed-down fraction of protons (%) at different centralities in Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV. The statistical and systematic uncertainties are shown respectively.
Transverse momentum spectra of primordial protons in 0-10% Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV. The statistical and systematic uncertainties are shown respectively.
Transverse momentum spectra of primordial protons in 10-20% Au+Au collisions at $\sqrt{s_{NN}}$ = 3 GeV. The statistical and systematic uncertainties are shown respectively.
The ratio between the prompt psi(2S) and J/psi yields, reconstructed via their decays into muon pairs, is measured in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC, corresponding to integrated luminosities of 150 inverse microbarns and 5.4 inverse picobarns, respectively. The double ratio of measured yields, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/ N[J/psi])[pp], is computed in three PbPb collision centrality bins and two kinematic ranges: one at midrapidity, abs(y) < 1.6, covering the transverse momentum range 6.5 < pt < 30 GeV/c, and the other at forward rapidity, 1.6 < abs(y) < 2.4, extending to lower pt values, 3 < pt < 30 GeV/c. The centrality-integrated double ratio changes from 0.45 +/- 0.13 (stat) +/- 0.07 (syst) in the first range to 1.67 +/- 0.34 (stat) +/- 0.27 (syst) in the second. This difference is most pronounced in the most central collisions.
Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the midrapidity analysis bin.
Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of centrality, for the forward rapidity analysis bin.
Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, integrated over centrality, for the midrapidity and forward rapidity analysis bins.
The first study of W boson production in pPb collisions is presented, for bosons decaying to a muon or electron, and a neutrino. The measurements are based on a data sample corresponding to an integrated luminosity of 34.6 inverse nanobarns at a nucleon-nucleon centre-of-mass energy of sqrt(s[NN]) = 5.02 TeV, collected by the CMS experiment. The W boson differential cross sections, lepton charge asymmetry, and forward-backward asymmetries are measured for leptons of transverse momentum exceeding 25 GeV, and as a function of the lepton pseudorapidity in the abs(eta[lab]) < 2.4 range. Deviations from the expectations based on currently available parton distribution functions are observed, showing the need for including W boson data in nuclear parton distribution global fits.
Lepton charge asymmetry, $(N_{\ell}^+ - N_{\ell}^-)/(N_{\ell}^+ + N_{\ell}^-)$ as a function of the lepton pseudorapidity.
Production cross section for $\textrm{pPb} \to W^+ + X \to \ell \nu + X$ for positively (top) and negatively (bottom) charged leptons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the lepton pseudorapidity. Values are given first for muons and electrons separately, then combined. The global normalization uncertainty of 3.5\% is not included in the listed uncertainties.
Production cross section for $\textrm{pPb} \to W^- + X \to \ell \nu + X$ for positively (top) and negatively (bottom) charged leptons of $p_T$ larger than 25 GeV$/c$, in nanobarns, as a function of the lepton pseudorapidity. Values are given first for muons and electrons separately, then combined. The global normalization uncertainty of 3.5\% is not included in the listed uncertainties.
The relative yields of $\Upsilon$ mesons produced in pp and PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, $\Upsilon$(2S) and $\Upsilon$(3S), to the ground state, $\Upsilon$(1S), in both PbPb and pp collisions at the same center-of-mass energy. The double ratios, [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{PbPb}$ / [$\Upsilon$(nS)/$\Upsilon$(1S)]$_\mathrm{pp}$, are measured to be 0.308 $\pm$ 0.055 (stat) $\pm$ 0.019 (syst) for the $\Upsilon$(2S) and less than 0.26 at 95% confidence level for the $\Upsilon$(3S). No significant $\Upsilon$(3S) signal is found in the PbPb data. The double ratios are studied as a function of collision centrality, as well as dimuon transverse momentum and rapidity. No significant dependencies are observed.
Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of centrality, for upsilon $|y|<2.4$ and $p_T<30$GeV, and $p_{T}^{\mu}>4$GeV.
Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of pT, for upsilon $|y|<2.4$, $p_{T}^{\mu}>4$GeV, and 0--100\% event centrality.
Double ratio of measured yields, $(N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{\mathrm{PbPb}} / (N_{\varUpsilon(2S)} / N_{\varUpsilon(1S)})_{pp}$, as a function of rapidity, for upsilon $pT<30$GeV, $p_{T}^{\mu}>4$GeV, and 0--100\% event centrality.
Inclusive jet spectra from pp and PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV, collected with the CMS detector at the LHC, are presented. Jets are reconstructed with three different distance parameters (R = 0.2, 0.3, and 0.4) for transverse momentum (pT) greater than 70 GeV and pseudorapidity abs(eta) < 2. Next-to-leading-order quantum chromodynamic calculations with non-perturbative corrections are found to over-predict jet production cross sections in pp for small distance parameters. The jet nuclear modification factors for PbPb compared to pp collisions, show a steady decrease from peripheral to central events, along with a weak dependence on the jet pT. They are found to be independent of the distance parameter in the measured kinematic range.
Raw subtracted $p_T$ for jets reconstructed in PbPb collisions (in different centrality bins) with the anti-k$_T$ algorythm with distance parameter $R=0.3$, in the range $70< p_{T} < 80$GeV/c and $|\eta|<2$. Quantity found by taking the difference of the sum of PF candidates within the jet cone and raw jet $p_T$.
Raw subtracted $p_T$ for jets reconstructed in PbPb collisions (in different centrality bins) with the anti-k$_T$ algorythm with a distance parameter $R=0.3$, in the range $110< p_{T} < 130$GeV/c and $|\eta|<2$. Quantity found by taking the difference of the sum of PF candidates within the jet cone and raw jet $p_T$.
Average raw subtracted $p_T$ for PF jets reconstructed in PbPb collisions (in different centrality bins) with the anti-k$_T$ algorythm with a distance parameter $R=0.3$, in $|\eta|<0.2$.
The nuclear modification factor RAA and the azimuthal anisotropy coefficient v[2] of prompt and nonprompt (i.e. those from decays of b hadrons) J/psi mesons, measured from PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta pt > 6.5 GeV/c and rapidity abs(y) < 2.4, extending down to pt = 3 GeV/c in the 1.6 < abs(y) < 2.4 range. The v[2] of prompt J/psi is found to be nonzero, but with no strong dependence on centrality, rapidity, or pt over the full kinematic range studied. The measured v[2] of nonprompt J/psi is consistent with zero. The RAA of prompt J/psi exhibits a suppression that increases from peripheral to central collisions but does not vary as a function of either y or pt in the fiducial range. The nonprompt J/psi RAA shows a suppression which becomes stronger as rapidity or pt increase. The v[2] and nuclear suppression of open and hidden charm, and of open charm and beauty, are compared.
Prompt J/$\psi$ $v_{2}$ as a function of centrality. The average ${N}_{\rm part}$ values correspond to events flatly distributed across centrality.
Prompt J/$\psi$ $v_{2}$ as a function of rapidity.
Prompt J/$\psi$ $v_{2}$ as a function of $p_{T}$.
The production yields of Upsilon(1S), Upsilon(2S), and Upsilon(3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76 TeV. The data correspond to integrated luminosities of 166 inverse microbarns and 5.4 inverse picobarns for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of Upsilon rapidity y up to 2.4, and transverse momentum pT up to 20 GeV/c. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to approximately 2 and 8, for the Upsilon(1S) and Upsilon(2S) states, respectively. No significant dependence of this suppression is observed as a function of y or pT. The Upsilon(3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of approximately 7 at a 95% confidence level. The observed suppression is in agreement with theoretical scenarios modeling the sequential melting of quarkonium states in a quark gluon plasma.
Differential cross section for Y(1S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.
Differential cross section for Y(2S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.
Differential cross section for Y(3S) states as a function of their transverse momentum and per unit of rapidity in pp collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% are not displayed.
The relative modification of the prompt psi(2S) and J/psi yields from pp to PbPb collisions, at the center of mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 inverse picobarns and 464 inverse microbarns, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N[psi(2S)]/N[J/psi])[PbPb] / (N[psi(2S)]/N[J/psi])[pp], is determined as a function of PbPb collision centrality and charmonium transverse momentum pt, in two kinematic intervals: abs(y) < 1.6 covering 6.5 < pt < 30 GeV/c and 1.6 < abs(y) < 2.4 covering 3 < pt < 30 GeV/c. The centrality-integrated double ratios are 0.36 +/- 0.08 (stat) +/-0.05 (syst) in the first interval and 0.24 +/- 0.22 (stat) +/- 0.09 (syst) in the second. The double ratio is lower than unity in all the measured bins, suggesting that the psi(2S) yield is more suppressed than the J/psi yield in the explored phase space.
Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.
95% CL intervals on the double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the midrapidity analysis bin.
Double ratio of measured yields, $(N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{\mathrm{PbPb}} / (N_{\psi\mathrm{(2S)}} / N_{J/\psi})_{pp}$, as a function of pT, for the forward rapidity analysis bin.
$J/\psi$ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive $J/\psi$ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The $J/\psi$ yields are measured in a wide transverse momentum ($p_{\rm{T}}$) range of 0.15 GeV/$c$ to 12 GeV/$c$ from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the $J/\psi$ yield is suppressed by a factor of approximately 3 for $p_{\rm{T}}>5$ GeV/$c$ relative to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The $J/\psi$ nuclear modification factor displays little dependence on $p_{\rm{T}}$ in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by $J/\psi$ mesons in the QGP.
Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 0-80% Au+Au collisions at 200 GeV
Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 0-20% Au+Au collisions at 200 GeV
Invariant yield of inclusive J/PSI(1S) times branching ratio to the dimuon decay in 20-40% Au+Au collisions at 200 GeV
In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.
Uncorrected $z_{g}$ for $20 < p_{\rm{T, jet}} < 25$ GeV/c, R=0.4 anti-kT jets
Uncorrected $R_{g}$ for $20 < p_{\rm{T, jet}} < 25$ GeV/c, R=0.4 anti-kT jets