Analyzing powers for p→n→pp(S01)π− were measured at beam energies 353, 404, and 440 MeV by extracting the quasifree process from p→d→pppπ−. Partial wave amplitude analysis yields a significant contribution from the isospin 1, s-wave channel. This contribution is relatively much larger than that expected from theoretical models which have been successful in describing the isospin 1, s-wave channel behavior of pp→ppπ0 cross sections at threshold.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
A polarized proton beam from SATURNE II, the Saclay polarized targets with$^6$Li compounds, and an unpol
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The pp elastic scattering analyzing power was measured in small energy steps in the vicinity of the accelerator depolarizing resonance $\gamma G= 6 $ at 2.202 GeV.
Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.
Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.
Analysing power measurements in P P elastic scattering LEN(C=CU) is the length of CU degrader thickness used in each group.
A polarized proton beam extracted from SATURNE II, the Saclay polarized target with$^6$Li compounds, and
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
Analysing power measurements in the scattering of polarized protons from either hydrogen in the LiH target or on bound protons in the LiD target. The three sets of results are independent.
A study of the polarization of $\Lambda$ hyperons produced in inelastic pN reactions induced by the 450 GeV proton beam from the CERN SPS has been performed with t
No description provided.
Exclusive production of $\rho^0$ and $J/\psi$ mesons in e^+ p collisions has been studied with the ZEUS detector in the kinematic range $0.25 < Q^2 < 50 GeV^2, 20 < W < 167 GeV$ for the $\rho^0$ data and $2 < Q^2 < 40 GeV^2, 50 < W < 150 GeV$ for the $J/\psi$ data. Cross sections for exclusive $\rho^0$ and $J/\psi$ production have been measured as a function of $Q^2, W$ and $t$. The spin-density matrix elements $r^{04}_{00}, r^1_{1-1}$ and $Re r^{5}_{10}$ have been determined for exclusive $\rho^0$ production as well as $r^{04}_{00}$ and $r^{04}_{1-1}$ for exclusive $J/\psi$ production. The results are discussed in the context of theoretical models invoking soft and hard phenomena.
Exclusive RHO0 electro- and photo- production and cross sections as a function of Q**2 from the BPC data set.
Exclusive RHO0 electro- and photo- production cross section as a function of W from the BPC data set.
Exclusive RHO0 electro- and photo- production cross sections as a function of W from the DIS data set.
In the Standard Model, b quarks produced in e^+e^- annihilation at the Z^0 peak have a large average longitudinal polarization of -0.94. Some fraction of this polarization is expected to be transferred to b-flavored baryons during hadronization. The average longitudinal polarization of weakly decaying b baryons, <P_L^{\Lambda_b}>, is measured in approximately 4.3 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995 at LEP. Those b baryons that decay semileptonically and produce a \Lambda baryon are identified through the correlation of the baryon number of the \Lambda and the electric charge of the lepton. In this semileptonic decay, the ratio of the neutrino energy to the lepton energy is a sensitive polarization observable. The neutrino energy is estimated using missing energy measurements. From a fit to the distribution of this ratio, the value <P_L^{\Lambda_b}> = -0.56^{+0.20}_{-0.13} +/- 0.09 is obtained, where the first error is statistical and the second systematic.
Charge conjugate states are included.
The tensor analyzing power A yy in inclusive breakup of 9 GeV/c deuterons on carbon has been measured at the detected proton angle of 85 mr. The analyzing power remains positive at the highest measured momentum of the proton in definite contradiction with the predictions of the existing models. The vector analyzing power A y has been obtained simultaneously with A yy .
No description provided.
Polarization transfer observables in π + d elastic scattering have been measured for the first time. Four polarization transfer parameters were determined at pion energies T π =134 MeV and 180 MeV at scattering angles θ π ,C.M. between 100° and 140° using a deuteron target polarized perpendicular to the scattering plane and a deuteron tensor polarimeter. The data are compared to different predictions from the SAID phase shift analysis and Faddeev calculations.
Systematic and statistical errors are added in quadrature.
Systematic and statistical errors are added in quadrature.
Associated strangeness production in the reactions γp → K + Λ and γp → K + Σ 0 was measured with the SAPHIR detector at the electron stretcher ring ELSA at Bonn. Data on total and differential cross sections and on hyperon polarizations are presented. The total cross section for Λ production shows a strong threshold enhancement whereas the Σ 0 data have a maximum at about E γ =1.45 GeV. Along with the angular decomposition of the differential cross section into polynomials, this suggests resonance production. However, the angular distributions of both hyperon polarizations vary only slightly with the photon energy. Λ and Σ 0 polarizations show opposite signs and change sign over the angular range.
Total cross section for the reaction GAMMA P --> K+ LAMBDA.
Total cross section for the reaction GAMMA P --> K+ SIGMA0.
Differential cross section for the reaction GAMMA P --> K+ LAMBDA in the GAMMA energy range 0.90 to 1.10 GeV in three energy bins.