Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Angular analysis of $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$

The Belle collaboration Abdesselam, A. ; Adachi, I. ; Adamczyk, K. ; et al.
BELLE-CONF-1603, 2016.
Inspire Record 1446979 DOI 10.17182/hepdata.72558

We present a measurement of angular observables, $P_4'$, $P_5'$, $P_6'$, $P_8'$, in the decay $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$, where $\ell^+\ell^-$ is either $e^+e^-$ or $\mu^+\mu^-$. The analysis is performed on a data sample corresponding to an integrated luminosity of $711~\mathrm{fb}^{-1}$ containing $772\times 10^{6}$ $B\bar B$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy $e^+e^-$ collider KEKB. Four angular observables, $P_{4,5,6,8}'$ are extracted in five bins of the invariant mass squared of the lepton system, $q^2$. We compare our results for $P_{4,5,6,8}'$ with Standard Model predictions including the $q^2$ region in which the LHCb collaboration reported the so-called $P_5'$ anomaly.

1 data table

Results of the angular analysis of $B^0 \to K^\ast(892)^0 \ell^+ \ell^-$ (where $\ell = e,\mu$) in five bins of $q^2$, the di-lepton invariant mass squared.


$K^+$ nucleon elastic scattering at 180° between 1.0 and 1.5 GeV/c incident momentum

Adams, U. ; Carter, R.S. ; Cook, V. ; et al.
Nucl.Phys.B 87 (1975) 41-51, 1975.
Inspire Record 1392682 DOI 10.17182/hepdata.32061

We have measured the cross section at 180° for K + p and K + n elastic scattering in the momentum range 1.0 to 1.5 GeV/ c . The K + n cross section was measured on deuterium and the K + p on hydrogen and deuterium. We were thus able to measure directly the difference between free nucleon (proton) scattering and bound nucleon (proton) scattering at large angles. This difference was found to be small and within our experimental accuracy the K + p(n) cross section should be equal to the K + p (free) cross section at 180°. We found no evidence for an s -channel resonance Z ∗ in either the K + p or K + n system. A comparison of our data and those of other groups with theoretical predictions is given.

2 data tables

DEUTERIUM TARGET. U IS ABOUT 0.1 GEV**2.

HYDROGEN AND DEUTERIUM TARGET DATA ARE IN GOOD AGREEMENT. THESE CROSS SECTIONS ARE A WEIGHTED AVERAGE.


Low energy $\Lambda p \to \Lambda p$ cross section measurement and determination of S-wave scattering lengths

Alexander, G. ; Benary, O. ; Karshon, U. ; et al.
Phys.Lett. 19 (1966) 715-719, 1966.
Inspire Record 1389622 DOI 10.17182/hepdata.30161

The Λ p å Λ p cross section has been measured in the Λ-momentum range of 120 to 320 MeV/ c using 238 events. A comparison with the effective range approximation yielded the values a s = −2.46, a t = −2.07, r s = 3.87 and r t = 4.50 in fm.

1 data table

No description provided.


$K^+ n$ charge exchange reaction at 3 GeV/c

Goldschmidt-Clermont, Y. ; Henri, V.P. ; Jongejans, B. ; et al.
Phys.Lett.B 27 (1968) 602-604, 1968.
Inspire Record 1389631 DOI 10.17182/hepdata.29205

About 100 000 pictures, with an average of ∼12K + per picture, taken in the 81 cm Saclay deuterium bubble chamber exposed to a separated 3 GeV/c K + beam have been analysed for the reaction K + d→K 0 pp in the 1-prong V 0 and 2-prong V 0 topologies. 214 such events have been found allowing a determination of the differential cross-section. A comparison with the prediction of Rarita and Schwarzschild yields reasonable agreement; in particular a large real part is inferred for the amplitude for the reaction K + n→K 0 p.

2 data tables

The errors are statistical only.

The errors are statistical only. To evaluate the cross section on neutron thE data are divided on (1-FORMFACTOR(C=DEUT). For definition of the formfactor see L. Durand, Phys. Rev. 115 (1959) 1020.


Angular analysis of the decay B0 to K*0 mu mu from pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057

The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.

2 data tables

The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.

The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.


Measurement of the transverse polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7$ TeV using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 91 (2015) 032004, 2015.
Inspire Record 1332748 DOI 10.17182/hepdata.66547

The transverse polarization of $\Lambda$ and $\bar\Lambda$ hyperons produced in proton-proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760 $\mu$b$^{-1}$ of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman $x_{\rm F}$ from $5\times 10^{-5}$ to 0.01 and transverse momentum $p_{\rm T}$ from 0.8 to 15 GeV is $-0.010 \pm 0.005({\rm stat}) \pm 0.004({\rm syst})$ for $\Lambda$ and $0.002 \pm 0.006({\rm stat}) \pm 0.004({\rm syst})$ for $\bar\Lambda$. It is also measured as a function of $x_{\rm F}$ and $p_{\rm T}$, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the $x_{\rm F}$ range covered by this mesurement.

5 data tables

Transverse polarization POL of LAMBDA and LAMBDABAR hyperons averaged over PT and XF.

Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of XF.

Transverse polarization POL of LAMBDA and LAMBDABAR hyperons as a function of PT.

More…

Measurement of the $\bar{B} \rightarrow X_s \gamma$ Branching Fraction with a Sum of Exclusive Decays

The Belle collaboration Saito, T. ; Ishikawa, A. ; Yamamoto, H. ; et al.
Phys.Rev.D 91 (2015) 052004, 2015.
Inspire Record 1330289 DOI 10.17182/hepdata.72902

We use 772$\times 10^6$ $B \bar{B}$ meson pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector to measure the branching fraction for $\bar{B} \rightarrow X_s \gamma$. Our measurement uses a sum-of-exclusives approach in which 38 of the hadronic final states with strangeness equal to $+1$, denoted by $X_s$, are reconstructed. The inclusive branching fraction for $M_{X_s}<$ 2.8 GeV/$c^2$, which corresponds to a minimum photon energy of 1.9 GeV, is measured to be ${\cal B}(\bar{B} \rightarrow X_s \gamma)=(3.51\pm0.17\pm0.33)\times10^{-4}$, where the first uncertainty is statistical and the second is systematic.

1 data table

The yields and partial branching fraction in each $M_{X_s}$ mass bin for the decay $\bar{B} \rightarrow X_s \gamma$, where $\bar{B}$ is either $\bar{B}^0$ or $B^-$, $X_s$ denotes all the hadron combinations that carry strangeness of +1, and charge conjugation is implied.


Cross sections for the reactions $e^+ e^-\to K_S^0 K_L^0$, $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ from events with initial-state radiation

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 092002, 2014.
Inspire Record 1287920 DOI 10.17182/hepdata.64506

We study the processes $e^+ e^-\to K_S^0 K_L^0 \gamma$, $K_S^0 K_L^0 \pi^+\pi^-\gamma$, $K_S^0 K_S^0 \pi^+\pi^-\gamma$, and $K_S^0 K_S^0 K^+K^-\gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb$^{-1}$ of data collected with the BaBar detector at SLAC. We observe the $\phi(1020)$ resonance in the $K_S^0 K_L^0$ final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the $e^+ e^-\to K_S^0 K_L^0 $ cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the $e^+ e^-\to K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ cross sections, and study the intermediate resonance structures. We obtain the first observations of \jpsi decay to the $K_S^0 K_L^0 \pi^+\pi^-$, $K_S^0 K_S^0 \pi^+\pi^-$, and $K_S^0 K_S^0 K^+K^-$ final states.

22 data tables

Cross section measurement for PHI(1020).

Mass measurement for PHI(1020).

Measurement of the PHI(1020) width.

More…

Updated cross section measurement of $e^+ e^- \to K^+ K^- J/\psi$ and $K_S^0K_S^0J/\psi$ via initial state radiation at Belle

The Belle collaboration Shen, C.P. ; Yuan, C.Z. ; Wang, P. ; et al.
Phys.Rev.D 89 (2014) 072015, 2014.
Inspire Record 1282602 DOI 10.17182/hepdata.64381

The cross sections of the processes $e^+ e^- \to K^+ K^- J/\psi$ and $K_S^0K_S^0J/\psi$ are measured via initial state radiation at center-of-mass energies between the threshold and 6.0~GeV using a data sample of 980~fb$^{-1}$ collected with the Belle detector on or near the $\Upsilon(nS)$ resonances, where $n=$1, 2, ..., 5. The cross sections for $e^+ e^- \to K^+ K^- J/\psi$ are at a few pb level and the average cross section for $e^+ e^- \to K_S^0K_S^0J/\psi$ is $1.8\pm 0.6 (\rm stat.)\pm 0.3 (\rm syst.)$~pb between 4.4 and 5.2~GeV. All of them are consistent with previously published results with improved precision. A search for resonant structures and associated intermediate states in the cross section of the process $e^+ e^- \to K^+ K^- J/\psi$ is performed.

3 data tables

Cross section for K+ K- J/PSI production as a function of SQRT(S). Upper limits include the systematic errors.

Cross section for K0S K0S J/PSI production as a function of SQRT(S).

Average cross section for K0S K0S J/PSI production.